On the relative rotation of multivalued potential vector fields
Sbornik. Mathematics, Tome 74 (1993) no. 1, pp. 131-144
Voir la notice de l'article provenant de la source Math-Net.Ru
Conditions are presented under which the relative index of a critical set realizing a local minimum of a nonsmooth functional coincides with the Euler–Poincaré characteristic of this set. An analogous result is obtained for the index of a functional increasing at $\infty$.
@article{SM_1993_74_1_a10,
author = {V. S. Klimov and N. V. Senchakova},
title = {On the relative rotation of multivalued potential vector fields},
journal = {Sbornik. Mathematics},
pages = {131--144},
publisher = {mathdoc},
volume = {74},
number = {1},
year = {1993},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1993_74_1_a10/}
}
V. S. Klimov; N. V. Senchakova. On the relative rotation of multivalued potential vector fields. Sbornik. Mathematics, Tome 74 (1993) no. 1, pp. 131-144. http://geodesic.mathdoc.fr/item/SM_1993_74_1_a10/