Immersions of locally euclidean and conformally flat metrics
Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 467-478

Voir la notice de l'article provenant de la source Math-Net.Ru

The possibility of imbedding $n$-dimensional locally Euclidean metrics in the large in $\mathbf R^n$ is studied by means of the global inverse function theorem in the forms suggested by Hadamard, John, Levy and Plastock. The imbeddability of conformally Euclidean metrics is studied by means of a theorem of Zorich on the removability of an isolated singularity of a locally quasiconformal mapping.
@article{SM_1992_73_2_a9,
     author = {V. A. Aleksandrov},
     title = {Immersions of locally euclidean and conformally flat metrics},
     journal = {Sbornik. Mathematics},
     pages = {467--478},
     publisher = {mathdoc},
     volume = {73},
     number = {2},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_73_2_a9/}
}
TY  - JOUR
AU  - V. A. Aleksandrov
TI  - Immersions of locally euclidean and conformally flat metrics
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 467
EP  - 478
VL  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1992_73_2_a9/
LA  - en
ID  - SM_1992_73_2_a9
ER  - 
%0 Journal Article
%A V. A. Aleksandrov
%T Immersions of locally euclidean and conformally flat metrics
%J Sbornik. Mathematics
%D 1992
%P 467-478
%V 73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1992_73_2_a9/
%G en
%F SM_1992_73_2_a9
V. A. Aleksandrov. Immersions of locally euclidean and conformally flat metrics. Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 467-478. http://geodesic.mathdoc.fr/item/SM_1992_73_2_a9/