The level set of a smooth mapping in a neighborhood of a singular point, and zeros of a quadratic mapping
Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 455-466 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The level set $M$ of a smooth mapping $F$ in a neighborhood of an anormal point is investigated. Concepts of 2-regularity are introduced for it. It is proved that if the mapping is 2-regular at the point under consideration, then in a neighborhood of it the set $M$ is locally diffeomorphic to the set of zeros of the second differential of $F$.
@article{SM_1992_73_2_a8,
     author = {E. R. Avakov and A. A. Agrachev and A. V. Arutyunov},
     title = {The level set of a~smooth mapping in a~neighborhood of a~singular point, and zeros of a~quadratic mapping},
     journal = {Sbornik. Mathematics},
     pages = {455--466},
     year = {1992},
     volume = {73},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_73_2_a8/}
}
TY  - JOUR
AU  - E. R. Avakov
AU  - A. A. Agrachev
AU  - A. V. Arutyunov
TI  - The level set of a smooth mapping in a neighborhood of a singular point, and zeros of a quadratic mapping
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 455
EP  - 466
VL  - 73
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1992_73_2_a8/
LA  - en
ID  - SM_1992_73_2_a8
ER  - 
%0 Journal Article
%A E. R. Avakov
%A A. A. Agrachev
%A A. V. Arutyunov
%T The level set of a smooth mapping in a neighborhood of a singular point, and zeros of a quadratic mapping
%J Sbornik. Mathematics
%D 1992
%P 455-466
%V 73
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1992_73_2_a8/
%G en
%F SM_1992_73_2_a8
E. R. Avakov; A. A. Agrachev; A. V. Arutyunov. The level set of a smooth mapping in a neighborhood of a singular point, and zeros of a quadratic mapping. Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 455-466. http://geodesic.mathdoc.fr/item/SM_1992_73_2_a8/

[1] Edvars R., Funktsionalnyi analiz, Mir, M., 1969

[2] Kakutani S., Klee V. L., “The finite topology of a linear space”, Arch. Math. Fasc. 1, 14 (1963), 55–58 | DOI | MR | Zbl

[3] Agrachev A. A., Gamkrelidze R. V., “Vychislenie eilerovoi kharakteristiki perechislenii veschestvennykh kvadrik”, DAN SSSR, 299:1 (1988), 11–14 | MR | Zbl

[4] Agrachev A. A., “Topologiya kvadratichnykh otobrazhenii i gessiany gladkikh otobrazhenii”, Itogi nauki i tekhniki. Algebra. Topologiya. Geometriya, 26, VINITI, M., 1988, 85–124 | MR | Zbl

[5] Hestenes M. R., “Quadratic forms in Hilbert space”, Pacific J. Math., 1:4 (1951), 525–581 | MR | Zbl

[6] Leng S., Vvedenie v teoriyu differentsiruemykh mnogoobrazii, Mir, M., 1967

[7] Milnor D., Teoriya Morsa, Mir, M., 1965 | MR

[8] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[9] Arutyunov A. V., “K teorii kvadratichnykh otobrazhenii v banakhovykh prostranstvakh”, DAN SSSR, 314:6 (1990), 1290–1292 | MR | Zbl