Primitive elements of free groups of rank~3
Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 445-454

Voir la notice de l'article provenant de la source Math-Net.Ru

The automorphism group of the free metabelian group $M_3$ is investigated. It is shown that $M_3$ has primitive elements not induced by primitive elements of $F_3$. A criterion is provided for elements of $M_3$ to be primitive.
@article{SM_1992_73_2_a7,
     author = {V. A. Roman'kov},
     title = {Primitive elements of free groups of rank~3},
     journal = {Sbornik. Mathematics},
     pages = {445--454},
     publisher = {mathdoc},
     volume = {73},
     number = {2},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_73_2_a7/}
}
TY  - JOUR
AU  - V. A. Roman'kov
TI  - Primitive elements of free groups of rank~3
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 445
EP  - 454
VL  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1992_73_2_a7/
LA  - en
ID  - SM_1992_73_2_a7
ER  - 
%0 Journal Article
%A V. A. Roman'kov
%T Primitive elements of free groups of rank~3
%J Sbornik. Mathematics
%D 1992
%P 445-454
%V 73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1992_73_2_a7/
%G en
%F SM_1992_73_2_a7
V. A. Roman'kov. Primitive elements of free groups of rank~3. Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 445-454. http://geodesic.mathdoc.fr/item/SM_1992_73_2_a7/