Primitive elements of free groups of rank~3
Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 445-454
Voir la notice de l'article provenant de la source Math-Net.Ru
The automorphism group of the free metabelian group $M_3$ is investigated. It is shown that $M_3$ has primitive elements not induced by primitive elements of $F_3$. A criterion is provided for elements of $M_3$ to be primitive.
@article{SM_1992_73_2_a7,
author = {V. A. Roman'kov},
title = {Primitive elements of free groups of rank~3},
journal = {Sbornik. Mathematics},
pages = {445--454},
publisher = {mathdoc},
volume = {73},
number = {2},
year = {1992},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1992_73_2_a7/}
}
V. A. Roman'kov. Primitive elements of free groups of rank~3. Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 445-454. http://geodesic.mathdoc.fr/item/SM_1992_73_2_a7/