Systems with a~homoclinic curve of multidimensional saddle-focus, and spiral chaos
Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 415-443
Voir la notice de l'article provenant de la source Math-Net.Ru
Consider the space $\mathscr B^1$ of dynamical systems having an isolated equilibrium point $O$ of saddle-focus type with a one- or two-dimensional unstable manifold and a trajectory $\Gamma$ homoclinic at $O$.
The following results are proved:
1. Systems with structurally unstable periodic motions are dense in $\mathscr B^1$.
2. Systems with a countable set of stable periodic motions are dense in the open subset $\mathscr B^1_s$ of $\mathscr B^1$ comprised of systems whose second saddle parameter $\sigma_2$ is negative.
3. Neither the subset $\mathscr B^1_u$ of $\mathscr B^1$ consisting of systems satisfying $\sigma_2>0$ nor any sufficiently small neighborhood of $\mathscr B^1_u$ in the space of all dynamical systems contains a system with stable periodic motions in a sufficiently small neighborhood of the contour $O\cup\Gamma$.
@article{SM_1992_73_2_a6,
author = {I. M. Ovsyannikov and L. P. Shilnikov},
title = {Systems with a~homoclinic curve of multidimensional saddle-focus, and spiral chaos},
journal = {Sbornik. Mathematics},
pages = {415--443},
publisher = {mathdoc},
volume = {73},
number = {2},
year = {1992},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1992_73_2_a6/}
}
TY - JOUR AU - I. M. Ovsyannikov AU - L. P. Shilnikov TI - Systems with a~homoclinic curve of multidimensional saddle-focus, and spiral chaos JO - Sbornik. Mathematics PY - 1992 SP - 415 EP - 443 VL - 73 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1992_73_2_a6/ LA - en ID - SM_1992_73_2_a6 ER -
I. M. Ovsyannikov; L. P. Shilnikov. Systems with a~homoclinic curve of multidimensional saddle-focus, and spiral chaos. Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 415-443. http://geodesic.mathdoc.fr/item/SM_1992_73_2_a6/