Multiplicative inequalities for derivatives, and a priori estimates of smoothness of solutions of nonlinear differential equations
Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 379-392 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Inequalities of the following form are proved: if $x\in C^n[a,b]$ is an arbitrary function and $r=(\alpha_1\cdot1+\dots+\alpha_n\cdot n)/(\alpha_0+\dots+\alpha_n)$, then $$ \|x^{(r)}\|_C\leqslant c\bigl\||x|^{\alpha_0}|x'|^{\alpha_1}\cdot\ldots\cdot|x^{(n)}|^{\alpha_n}\bigr\|_C, $$ where $c$ depends only on $\alpha_0,\dots,\alpha_n$. The exponent $r$ is a limiting exponent. With the inequalities as a basis, imbedding theorems are constructed for classes of solutions of nonlinear singular differential equations in the space of $r$ times differentiable functions.
@article{SM_1992_73_2_a4,
     author = {V. E. Maiorov},
     title = {Multiplicative inequalities for derivatives, and a~priori estimates of smoothness of solutions of nonlinear differential equations},
     journal = {Sbornik. Mathematics},
     pages = {379--392},
     year = {1992},
     volume = {73},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_73_2_a4/}
}
TY  - JOUR
AU  - V. E. Maiorov
TI  - Multiplicative inequalities for derivatives, and a priori estimates of smoothness of solutions of nonlinear differential equations
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 379
EP  - 392
VL  - 73
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1992_73_2_a4/
LA  - en
ID  - SM_1992_73_2_a4
ER  - 
%0 Journal Article
%A V. E. Maiorov
%T Multiplicative inequalities for derivatives, and a priori estimates of smoothness of solutions of nonlinear differential equations
%J Sbornik. Mathematics
%D 1992
%P 379-392
%V 73
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1992_73_2_a4/
%G en
%F SM_1992_73_2_a4
V. E. Maiorov. Multiplicative inequalities for derivatives, and a priori estimates of smoothness of solutions of nonlinear differential equations. Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 379-392. http://geodesic.mathdoc.fr/item/SM_1992_73_2_a4/

[1] Maiorov V. E., “Ob odnom multiplikativnom neravenstve dlya proizvodnykh i ego prilozheniya”, Analysis Matematica, 15:2 (1989) | MR | Zbl

[2] Bernshtein S. N., Sobranie sochinenii, t. 3, M., 1960, s. 191–241

[3] Vasilev N. I., Klokov Yu. A., Osnovy teorii kraevykh zadach obyknovennykh differentsialnykh uravnenii, Zinatne, Riga, 1978 | MR

[4] Lepin A. Ya., Myshkis A. D., “Ob usloviyakh ogranichennosti proizvodnykh ogranichennykh reshenii obyknovennykh differentsialnykh uravnenii”, Differents. uravneniya, 1 (1965), 1260–1263 | MR | Zbl

[5] Kiguradze I. T., Nekotorye singulyarnye kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii, Izd-vo Tbil. un-ta, Tbilisi, 1975 | MR

[6] Khardi G. G., Littlvud D. E., Polia G., Neravenstva, IL, M., 1948

[7] Dubinskii Yu. A., “Nekotorye integralnye neravenstva i razreshimost dlya vyrozhdennykh ellipticheskikh sistem differentsialnykh uravnenii”, Matem. sb., 64 (106) (1964), 458–480 | MR | Zbl

[8] Pokhozhaev S. I., “Ob uravneniyakh vida $\Delta u=f(x, u, Du)$”, Matem. sb., 113 (155), 324–338 | MR | Zbl

[9] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[10] Oswald P., “On a priori estimates for positive solutions of similinear biharmonice equation in a ball”, Commentationes mathem. Univ. carolinae, 26:3 (1985) | MR | Zbl

[11] Taliaferro S., “A nonlinear singular boundary value problem”, Nonlinear Anal. Theory Math. and Appl., 3:6 (1979), 897–904 | DOI | MR | Zbl

[12] Demidov M. A., Klokov Yu. A., Mikhailov A. P., “O nekotorykh singulyarnykh zadachakh dlya obyknovennykh differentsialnykh uravnenii vtorogo poryadka”, Differents. uravneniya, 23:8 (1987), 1278–1282 | MR | Zbl

[13] Moiseev E. I., Sadovnichii V. A., O reshenii odnogo nelineinogo uravneniya v teorii gravitatsii na osnove prostranstva Minkovskogo, M., 1984 | MR

[14] Lepin L. A., “Metod nizhnikh i verkhnikh funktsii dlya differentsialnykh uravnenii vtorogo poryadka s osobennostyami”, Differents. uravneniya, 23:9 (1987), 1632–1634 | MR | Zbl