Multiplicative inequalities for derivatives, and a~priori estimates of smoothness of solutions of nonlinear differential equations
Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 379-392

Voir la notice de l'article provenant de la source Math-Net.Ru

Inequalities of the following form are proved: if $x\in C^n[a,b]$ is an arbitrary function and $r=(\alpha_1\cdot1+\dots+\alpha_n\cdot n)/(\alpha_0+\dots+\alpha_n)$, then $$ \|x^{(r)}\|_C\leqslant c\bigl\||x|^{\alpha_0}|x'|^{\alpha_1}\cdot\ldots\cdot|x^{(n)}|^{\alpha_n}\bigr\|_C, $$ where $c$ depends only on $\alpha_0,\dots,\alpha_n$. The exponent $r$ is a limiting exponent. With the inequalities as a basis, imbedding theorems are constructed for classes of solutions of nonlinear singular differential equations in the space of $r$ times differentiable functions.
@article{SM_1992_73_2_a4,
     author = {V. E. Maiorov},
     title = {Multiplicative inequalities for derivatives, and a~priori estimates of smoothness of solutions of nonlinear differential equations},
     journal = {Sbornik. Mathematics},
     pages = {379--392},
     publisher = {mathdoc},
     volume = {73},
     number = {2},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_73_2_a4/}
}
TY  - JOUR
AU  - V. E. Maiorov
TI  - Multiplicative inequalities for derivatives, and a~priori estimates of smoothness of solutions of nonlinear differential equations
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 379
EP  - 392
VL  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1992_73_2_a4/
LA  - en
ID  - SM_1992_73_2_a4
ER  - 
%0 Journal Article
%A V. E. Maiorov
%T Multiplicative inequalities for derivatives, and a~priori estimates of smoothness of solutions of nonlinear differential equations
%J Sbornik. Mathematics
%D 1992
%P 379-392
%V 73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1992_73_2_a4/
%G en
%F SM_1992_73_2_a4
V. E. Maiorov. Multiplicative inequalities for derivatives, and a~priori estimates of smoothness of solutions of nonlinear differential equations. Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 379-392. http://geodesic.mathdoc.fr/item/SM_1992_73_2_a4/