On the theory of the matrix Riccati equation
Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 341-354 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Various approaches to the study of the matrix Riccati equation with variable coefficients are investigated. It is proved that the complexification of such an equation determines a flow on the Seigel generalized upper half-plane and on each of the strata forming its boundary. The concept of the matrix cross-ratio of a quadruple of points of the Grassmann manifold $G_n(\mathbf R^{2n})$ is introduced, and applications of it are given. In particular, a criterion is given for the preservation of the isoclinic property for a pair of planes that are displaced by the flow on $G_n(\mathbf R^{2n})$ determined by a matrix Riccati equation with variable coefficients. Bilinear optimal control problems with a quadratic quality criterion are considered. The corresponding extremals are found along with the matrix Riccati equations determined by them.
@article{SM_1992_73_2_a2,
     author = {M. I. Zelikin},
     title = {On the theory of the matrix {Riccati} equation},
     journal = {Sbornik. Mathematics},
     pages = {341--354},
     year = {1992},
     volume = {73},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_73_2_a2/}
}
TY  - JOUR
AU  - M. I. Zelikin
TI  - On the theory of the matrix Riccati equation
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 341
EP  - 354
VL  - 73
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1992_73_2_a2/
LA  - en
ID  - SM_1992_73_2_a2
ER  - 
%0 Journal Article
%A M. I. Zelikin
%T On the theory of the matrix Riccati equation
%J Sbornik. Mathematics
%D 1992
%P 341-354
%V 73
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1992_73_2_a2/
%G en
%F SM_1992_73_2_a2
M. I. Zelikin. On the theory of the matrix Riccati equation. Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 341-354. http://geodesic.mathdoc.fr/item/SM_1992_73_2_a2/

[1] Zelikin M. I., Optimalnoe upravlenie i variatsionnoe ischislenie, Izd-vo MGU, M., 1985 | MR | Zbl

[2] Herman R., Martin C., “Lie and Morse theory for periodic orbits of vector fields and matrix Riccati equations, I”, Math. Systems Theory, 1982, no. 15, 277–284 | MR | Zbl

[3] Herman R., Martin C., “Lie and Morse theory for periodic orbits of vector fields and matrix Riccati equations, II”, Math. Systems Theory, 1983, no. 16, 297–308 | DOI | MR

[4] Shayman M., “Phase portrait of the matrix Riccati equation”, SIAM J. Control Opt., 24 (1986), 1–65 | DOI | MR | Zbl

[5] Arnold V. I., “Teoremy Shturma v simplekticheskoi geometrii”, Funktsion. analiz. i ego pril., 19:4 (1985), 1–10 | MR

[6] Andrianov A. N., Zhuravlev V. G., Modulyarnye formy i operatory Gekke, Nauka, M., 1990 | MR

[7] Wong Y. C., “Isoclinic $n$-planes in Euclidean $2n$-space, Clifford parallels in elliptic $(2n-1)$-space and the Hurwitz matrix equations”, Mem. Amer. Math. Soc., 41 (1961), 1–112 | MR

[8] Wolf J., “Geodesic spheres in Grassmann manifolds”, Illinois Journal of Math., 7:3 (1963), 425–462 | MR

[9] Brockett R. W., “Lie algebras and Lie groups in control theory”, Geometric Methods in Control Theory, eds. D. Q. Mayne, R. W. Brockett, Reidel, Dordrecht, The Netherlands, 1973 | Zbl

[10] Brockett R. W., Millman R. S., Sussmann H. J., Differential geometric control theory, Birkhauser, Boston, 1983 | MR | Zbl

[11] Vershik A. M., Gershkovich V. Ya., “Negolonomnye dinamicheskie sistemy, geometriya raspredelenii i variatsionnye zadachi”, Itogi nauki i tekhn., 16, VINITI, M., 1987, 5–85 | MR

[12] Moser J., “Three integrable Hamiltonian systems, connected with isospectral deformations”, Adv. Math., 16:2 (1975), 197–220 | DOI | MR | Zbl