@article{SM_1992_73_2_a2,
author = {M. I. Zelikin},
title = {On the theory of the matrix {Riccati} equation},
journal = {Sbornik. Mathematics},
pages = {341--354},
year = {1992},
volume = {73},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1992_73_2_a2/}
}
M. I. Zelikin. On the theory of the matrix Riccati equation. Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 341-354. http://geodesic.mathdoc.fr/item/SM_1992_73_2_a2/
[1] Zelikin M. I., Optimalnoe upravlenie i variatsionnoe ischislenie, Izd-vo MGU, M., 1985 | MR | Zbl
[2] Herman R., Martin C., “Lie and Morse theory for periodic orbits of vector fields and matrix Riccati equations, I”, Math. Systems Theory, 1982, no. 15, 277–284 | MR | Zbl
[3] Herman R., Martin C., “Lie and Morse theory for periodic orbits of vector fields and matrix Riccati equations, II”, Math. Systems Theory, 1983, no. 16, 297–308 | DOI | MR
[4] Shayman M., “Phase portrait of the matrix Riccati equation”, SIAM J. Control Opt., 24 (1986), 1–65 | DOI | MR | Zbl
[5] Arnold V. I., “Teoremy Shturma v simplekticheskoi geometrii”, Funktsion. analiz. i ego pril., 19:4 (1985), 1–10 | MR
[6] Andrianov A. N., Zhuravlev V. G., Modulyarnye formy i operatory Gekke, Nauka, M., 1990 | MR
[7] Wong Y. C., “Isoclinic $n$-planes in Euclidean $2n$-space, Clifford parallels in elliptic $(2n-1)$-space and the Hurwitz matrix equations”, Mem. Amer. Math. Soc., 41 (1961), 1–112 | MR
[8] Wolf J., “Geodesic spheres in Grassmann manifolds”, Illinois Journal of Math., 7:3 (1963), 425–462 | MR
[9] Brockett R. W., “Lie algebras and Lie groups in control theory”, Geometric Methods in Control Theory, eds. D. Q. Mayne, R. W. Brockett, Reidel, Dordrecht, The Netherlands, 1973 | Zbl
[10] Brockett R. W., Millman R. S., Sussmann H. J., Differential geometric control theory, Birkhauser, Boston, 1983 | MR | Zbl
[11] Vershik A. M., Gershkovich V. Ya., “Negolonomnye dinamicheskie sistemy, geometriya raspredelenii i variatsionnye zadachi”, Itogi nauki i tekhn., 16, VINITI, M., 1987, 5–85 | MR
[12] Moser J., “Three integrable Hamiltonian systems, connected with isospectral deformations”, Adv. Math., 16:2 (1975), 197–220 | DOI | MR | Zbl