The problem of steady-state oscillations of a~transversally isotropic half-cylinder
Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 579-602
Voir la notice de l'article provenant de la source Math-Net.Ru
The authors study the problem of solvability on the semiaxis of the equation
$$
\mathscr P(u)=-A\frac{d^2u}{dy^2}+iB\frac{du}{dy}+(C-\omega^2R)u=0,
$$
where $\omega\in\mathbf R$, and $A$, $B$, $C$, and $R$ are unbounded symmetric operators in a Hilbert space $\mathfrak H$. Models of this equation are problems of steady-state oscillations of an elastic half-cylinder with various boundary conditions. The main results are theorems on factorization of a pencil related to this problem and solvability theorems.
@article{SM_1992_73_2_a17,
author = {A. A. Shkalikov and A. V. Shkred},
title = {The problem of steady-state oscillations of a~transversally isotropic half-cylinder},
journal = {Sbornik. Mathematics},
pages = {579--602},
publisher = {mathdoc},
volume = {73},
number = {2},
year = {1992},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1992_73_2_a17/}
}
TY - JOUR AU - A. A. Shkalikov AU - A. V. Shkred TI - The problem of steady-state oscillations of a~transversally isotropic half-cylinder JO - Sbornik. Mathematics PY - 1992 SP - 579 EP - 602 VL - 73 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1992_73_2_a17/ LA - en ID - SM_1992_73_2_a17 ER -
A. A. Shkalikov; A. V. Shkred. The problem of steady-state oscillations of a~transversally isotropic half-cylinder. Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 579-602. http://geodesic.mathdoc.fr/item/SM_1992_73_2_a17/