The problem of steady-state oscillations of a transversally isotropic half-cylinder
Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 579-602 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The authors study the problem of solvability on the semiaxis of the equation $$ \mathscr P(u)=-A\frac{d^2u}{dy^2}+iB\frac{du}{dy}+(C-\omega^2R)u=0, $$ where $\omega\in\mathbf R$, and $A$, $B$, $C$, and $R$ are unbounded symmetric operators in a Hilbert space $\mathfrak H$. Models of this equation are problems of steady-state oscillations of an elastic half-cylinder with various boundary conditions. The main results are theorems on factorization of a pencil related to this problem and solvability theorems.
@article{SM_1992_73_2_a17,
     author = {A. A. Shkalikov and A. V. Shkred},
     title = {The problem of steady-state oscillations of a~transversally isotropic half-cylinder},
     journal = {Sbornik. Mathematics},
     pages = {579--602},
     year = {1992},
     volume = {73},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_73_2_a17/}
}
TY  - JOUR
AU  - A. A. Shkalikov
AU  - A. V. Shkred
TI  - The problem of steady-state oscillations of a transversally isotropic half-cylinder
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 579
EP  - 602
VL  - 73
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1992_73_2_a17/
LA  - en
ID  - SM_1992_73_2_a17
ER  - 
%0 Journal Article
%A A. A. Shkalikov
%A A. V. Shkred
%T The problem of steady-state oscillations of a transversally isotropic half-cylinder
%J Sbornik. Mathematics
%D 1992
%P 579-602
%V 73
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1992_73_2_a17/
%G en
%F SM_1992_73_2_a17
A. A. Shkalikov; A. V. Shkred. The problem of steady-state oscillations of a transversally isotropic half-cylinder. Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 579-602. http://geodesic.mathdoc.fr/item/SM_1992_73_2_a17/

[1] Kostyuchenko A. G., Orazov M. B., “Zadacha o kolebaniyakh uprugogo polutsilindra i svyazannye s nei samosopryazhennye kvadratichnye puchki”, Tr. seminara im. I. G. Petrovskogo, 6, Izd-vo MGU, M., 1981, 97–146 | MR

[2] Kostyuchenko A. G., Shkalikov A. A., “Samosopryazhennye kvadratichnye puchki operatorov i ellipticheskie zadachi”, Funktsion. analiz i ego pril., 17:2 (1983), 38–61 | MR | Zbl

[3] Shkalikov A. A., K spektralnoi teorii puchkov operatorov i razreshimosti operatorno-differentsialnykh uravnenii, Dis. ... dokt. fiz.-matem. nauk, MGU, M., 1985

[4] Kupradze V. D., Gegelia T. G., Basheileishvili M. O., Burguladze T. V., Trekhmernye zadachi matematicheskoi teorii uprugosti, Tbilisi, 1968 | MR | Zbl

[5] Sarkisyan V. S., Nekotorye zadachi matematicheskoi teorii uprugosti anizotropnogo tela, Izd-vo Erevan. un-ta, Erevan, 1976 | MR

[6] Landau L. D., Lifshits E. M., Teoriya uprugosti, Nauka, M., 1987 | MR | Zbl

[7] Krein S. G., Laptev G. I., “K zadache o dvizhenii vyazkoi zhidkosti v otkrytom sosude”, Funktsion. analiz i ego pril., 2:1 (1968), 40–50 | MR | Zbl

[8] Krein M. G., Langer G. K., “O nekotorykh matematicheskikh printsipakh teorii dempfirovannykh kolebanii kontinuumov”, Tr. mezhdunarodnogo simpoziuma po primeneniyu teorii funktsii kompleksnogo peremennogo v mekhanike sploshnoi sredy, Nauka, M., 1965, 283–322 | MR

[9] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974

[10] Tribel Kh., Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980 | MR

[11] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3 (1964), 53–161 | Zbl

[12] Shkalikov A. A., “Ellipticheskie uravneniya v gilbertovom prostranstve i spektralnye zadachi, svyazannye s nimi”, Tr. seminara im. I. G. Petrovskogo, 14, Izd-vo MGU, M., 1989, 140–224

[13] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[14] Kozhevnikov A. N., “Spektralnye zadachi dlya psevdodifferentsialnykh sistem, ellipticheskikh po Duglisu–Nirenbergu, i ikh prilozheniya”, Matem. sb., 92(134) (1973), 60–88 | Zbl

[15] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh samosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[16] Shkred A. V., “O linearizatsii spektralnykh zadach s parametrom v granichnom uslovii i svoistvakh proizvodnykh tsepochek M. V. Keldysha”, Matem. zametki, 46:4 (1989), 99–109 | MR | Zbl

[17] Shkalikov A. A., “O minimalnosti i polnote sistem, postroennykh po chasti sobstvennykh i prisoedinennykh elementov kvadratichnykh puchkov operatorov”, DAN SSSR, 285:6 (1985), 1334–1339 | MR

[18] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962

[19] Zilbergleit A. S., Kopilevich Yu. I., Spektralnaya teoriya regulyarnykh volnovodov, Izd-vo fiz.-tekhn. in-ta im. A. F. Ioffe, Leningrad, 1983 | MR

[20] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979