The problem of steady-state oscillations of a~transversally isotropic half-cylinder
Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 579-602

Voir la notice de l'article provenant de la source Math-Net.Ru

The authors study the problem of solvability on the semiaxis of the equation $$ \mathscr P(u)=-A\frac{d^2u}{dy^2}+iB\frac{du}{dy}+(C-\omega^2R)u=0, $$ where $\omega\in\mathbf R$, and $A$, $B$, $C$, and $R$ are unbounded symmetric operators in a Hilbert space $\mathfrak H$. Models of this equation are problems of steady-state oscillations of an elastic half-cylinder with various boundary conditions. The main results are theorems on factorization of a pencil related to this problem and solvability theorems.
@article{SM_1992_73_2_a17,
     author = {A. A. Shkalikov and A. V. Shkred},
     title = {The problem of steady-state oscillations of a~transversally isotropic half-cylinder},
     journal = {Sbornik. Mathematics},
     pages = {579--602},
     publisher = {mathdoc},
     volume = {73},
     number = {2},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_73_2_a17/}
}
TY  - JOUR
AU  - A. A. Shkalikov
AU  - A. V. Shkred
TI  - The problem of steady-state oscillations of a~transversally isotropic half-cylinder
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 579
EP  - 602
VL  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1992_73_2_a17/
LA  - en
ID  - SM_1992_73_2_a17
ER  - 
%0 Journal Article
%A A. A. Shkalikov
%A A. V. Shkred
%T The problem of steady-state oscillations of a~transversally isotropic half-cylinder
%J Sbornik. Mathematics
%D 1992
%P 579-602
%V 73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1992_73_2_a17/
%G en
%F SM_1992_73_2_a17
A. A. Shkalikov; A. V. Shkred. The problem of steady-state oscillations of a~transversally isotropic half-cylinder. Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 579-602. http://geodesic.mathdoc.fr/item/SM_1992_73_2_a17/