The canonical module of a quasihomogeneous normal affine $SL_2$-variety
Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 569-578 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the varieties mentioned in the title a description is given for the canonical divisor, the Picard group, and the divisor class group. In particular, it follows from this that the singular 3-dimensional quasihomogeneous $SL_2$-varieties are not Gorenstein. The canonical module is described. All descriptions are given in terms of discrete parameters: the height and the degree of a quasihomogeneous affine $SL_2$-variety.
@article{SM_1992_73_2_a16,
     author = {D. I. Panyushev},
     title = {The canonical module of a~quasihomogeneous normal affine $SL_2$-variety},
     journal = {Sbornik. Mathematics},
     pages = {569--578},
     year = {1992},
     volume = {73},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_73_2_a16/}
}
TY  - JOUR
AU  - D. I. Panyushev
TI  - The canonical module of a quasihomogeneous normal affine $SL_2$-variety
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 569
EP  - 578
VL  - 73
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1992_73_2_a16/
LA  - en
ID  - SM_1992_73_2_a16
ER  - 
%0 Journal Article
%A D. I. Panyushev
%T The canonical module of a quasihomogeneous normal affine $SL_2$-variety
%J Sbornik. Mathematics
%D 1992
%P 569-578
%V 73
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1992_73_2_a16/
%G en
%F SM_1992_73_2_a16
D. I. Panyushev. The canonical module of a quasihomogeneous normal affine $SL_2$-variety. Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 569-578. http://geodesic.mathdoc.fr/item/SM_1992_73_2_a16/

[1] Popov V. L., “Kvaziodnorodnye algebraicheskie mnogoobraziya gruppy $SL_2$”, Izv. AN SSSR. Ser. matem., 37:4 (1973), 792–832 | MR | Zbl

[2] Kraft Kh., Geometricheskie metody v teorii invariantov, Mir, M., 1987 | MR | Zbl

[3] Bartels D., “Quasihomogene affine Varietäten für $SL(2, \mathbf{C})$”, Seminaire d'Algebre, LNM, no. 1146, 1985, 1–105 | MR | Zbl

[4] Panyushev D. I., “Razreshenie osobennostei affinnykh normalnykh kvaziodnorodnykh $SL_2$-mnogoobrazii”, Funktsion. analiz i pril., 22:4 (1988), 94–95 | MR | Zbl

[5] Popov V. L., “Styagivanie deistvii reduktivnykh algebraicheskikh grupp”, Matem. sb., 130(172) (1986), 310–334 | MR | Zbl

[6] Panyushev D. I., “Stroenie kanonicheskogo modulya i gorenshteinovost dlya nekotorykh kvaziodnorodnykh mnogoobrazii”, Matem. sb., 137(179) (1988), 76–89 | MR

[7] Stanley R., “Invariants of finite groups and their applications to combinatorics”, Bull. Amer. Math. Soc., 1 (1979), 475–511 | DOI | MR | Zbl

[8] Vinberg E. B., Popov V. L., “Ob odnom klasse affinnykh kvaziodnorodnykh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 36:4 (1972), 749–763 | MR

[9] Magid A., “Picard groups of rings of invariants”, J. pure and applied Algebra, 17 (1980), 305–311 | DOI | MR | Zbl

[10] Fossum R., The divisor class group of a Krull domain, Springer, Berlin, 1973 | MR | Zbl

[11] Popov V. L., “Gruppy Pikara odnorodnykh prostranstv lineinykh algebraicheskikh grupp i odnomernye odnorodnye vektornye rassloeniya”, Izv. AN SSSR. Ser. matem., 38:2 (1974), 294–322 | Zbl