Weil representations of finite symplectic groups, and Gow lattices
Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 535-555 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of the positive-definite integral lattices $\Lambda$ introduced by Gow and contained in the space of the faithful rational Weil representation of the finite symplectic group $S=\operatorname{Sp}(2n,p)$ ($p$ a prime number, $p\equiv -1$ (mod 4)) and invariant under the action of this group. In the special case $n=2$, $p=3$ all such lattices are found, up to similarity. In the general case the group $G=\operatorname{Aut}(\Lambda)$ of all automorphisms of such lattices is computed. In particular, it is determined that in most cases $G$ coincides with $\operatorname{Aut}(S)$.
@article{SM_1992_73_2_a14,
     author = {Pham Huu Tiep},
     title = {Weil representations of finite symplectic groups, and {Gow} lattices},
     journal = {Sbornik. Mathematics},
     pages = {535--555},
     year = {1992},
     volume = {73},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_73_2_a14/}
}
TY  - JOUR
AU  - Pham Huu Tiep
TI  - Weil representations of finite symplectic groups, and Gow lattices
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 535
EP  - 555
VL  - 73
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1992_73_2_a14/
LA  - en
ID  - SM_1992_73_2_a14
ER  - 
%0 Journal Article
%A Pham Huu Tiep
%T Weil representations of finite symplectic groups, and Gow lattices
%J Sbornik. Mathematics
%D 1992
%P 535-555
%V 73
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1992_73_2_a14/
%G en
%F SM_1992_73_2_a14
Pham Huu Tiep. Weil representations of finite symplectic groups, and Gow lattices. Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 535-555. http://geodesic.mathdoc.fr/item/SM_1992_73_2_a14/

[1] Gow R., “Even unimoduiar lattices associated with the Weyl representation of the finite sumplectic group”, J. Algebra, 122 (1989), 510–519 | DOI | MR | Zbl

[2] Isaacs I. M., “Characters of solvable and symplectic groups”, Amer. J. Math., 95 (1973), 594–635 | DOI | MR | Zbl

[3] Seitz G. M., “Some representations of classical groups”, J. London Math. Soc., 10 (1975), 115–120 | DOI | MR | Zbl

[4] Ward H. N., “Representations of symplectic groups”, J. Algebra, 20 (1972), 182–195 | DOI | MR | Zbl

[5] Brown H., Bülow R., Neubüser J., Wondratrchek H., Zassenhaus H., Crystall groups of four-dimensional space, Wiley-Interscience, New York, 1978

[6] Gow R., “Real representations of the finite orthogonal and symplectic groups of odd characteristic”, J. Algebra, 96 (1985), 249–274 | DOI | MR | Zbl

[7] Cooperstein B. N., “Minimal degree for a permutation representation of a classical group”, Israel J. Math., 30 (1978), 213–235 | DOI | MR | Zbl

[8] Landazuri V., Seitz G. M., “On the minimal degrees of projective representations of the finite Chevalley groups”, J. Algebra, 32 (1974), 418–443 | DOI | MR | Zbl

[9] Liebeck M. W., “On the orders of maximal subgroups of the finite classical groups”, Proc. London Math. Soc. Ser. 3, 50 (1985), 426–446 | DOI | MR | Zbl

[10] Gorenstein D., Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, M., 1985 | MR | Zbl

[11] Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A., An ATLAS of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[12] Bondal A. I., Kostrikin A. I., Fam Khyu Tep, “Invariantnye reshetki, reshetka Licha i ee chetnye unimodulyarnye analogi v algebrakh $A_{p-1}$”, Matem. sb., 172(214) (1986), 435–464 | MR | Zbl

[13] Fam Khyu Tep, “Neprivodimye ortogonalnye razlozheniya v algebrakh Li”, Matem. sb., 180(222) (1989), 1396–1414 | Zbl

[14] Shaughnessy E. P., “Codes with simple automorphism groups”, Arch. Math., 22:5 (1971), 459–466 | DOI | MR | Zbl

[15] Ferguson P. A., “Finite complex linear groups of degree less than $\frac{2q+1}3$”, Proc. Symp. Pure Math., 37 (1980), 413–417 | MR | Zbl

[16] Plesken W., Pohst M., “On maximal finite irreducible subgroups of $\mathrm{GL}(n,\mathbf{Z})$. V: The eight-dimensional case and a complete description of dimensions less than ten”, Math. Gomput., 34:149 (1980), 277–301 | DOI | MR | Zbl

[17] Feit W., “On integral representations of finite groups”, Proc. London Math. Soc. Ser. 3, 29:4 (1974), 633–683 | DOI | MR | Zbl

[18] Rasala R., “On the minimal degrees of characters of $\mathfrak{S}_n$”, J. Algebra, 45:1 (1977), 132–181 | DOI | MR | Zbl

[19] Wagner A., “An observation on the degrees of projective representations of the symmetric and alternating groups over an arbitrary field”, Arch. Math., 29 (1977), 583–589 | DOI | MR | Zbl

[20] Gow R., “Unimodular integral lattices associated with the basic spin representations of $2A_n$ and $2S_n$”, Bull. London Math. Soc., 21 (1989), 257–262 | DOI | MR | Zbl

[21] Wilson R. A., “The complex Leech lattice and maximal subgroups of the Suzuki group”, J. Algebra, 84 (1983), 151–188 | DOI | MR | Zbl