Weil representations of finite symplectic groups, and Gow lattices
Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 535-555

Voir la notice de l'article provenant de la source Math-Net.Ru

A study is made of the positive-definite integral lattices $\Lambda$ introduced by Gow and contained in the space of the faithful rational Weil representation of the finite symplectic group $S=\operatorname{Sp}(2n,p)$ ($p$ a prime number, $p\equiv -1$ (mod 4)) and invariant under the action of this group. In the special case $n=2$, $p=3$ all such lattices are found, up to similarity. In the general case the group $G=\operatorname{Aut}(\Lambda)$ of all automorphisms of such lattices is computed. In particular, it is determined that in most cases $G$ coincides with $\operatorname{Aut}(S)$.
@article{SM_1992_73_2_a14,
     author = {Pham Huu Tiep},
     title = {Weil representations of finite symplectic groups, and {Gow} lattices},
     journal = {Sbornik. Mathematics},
     pages = {535--555},
     publisher = {mathdoc},
     volume = {73},
     number = {2},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_73_2_a14/}
}
TY  - JOUR
AU  - Pham Huu Tiep
TI  - Weil representations of finite symplectic groups, and Gow lattices
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 535
EP  - 555
VL  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1992_73_2_a14/
LA  - en
ID  - SM_1992_73_2_a14
ER  - 
%0 Journal Article
%A Pham Huu Tiep
%T Weil representations of finite symplectic groups, and Gow lattices
%J Sbornik. Mathematics
%D 1992
%P 535-555
%V 73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1992_73_2_a14/
%G en
%F SM_1992_73_2_a14
Pham Huu Tiep. Weil representations of finite symplectic groups, and Gow lattices. Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 535-555. http://geodesic.mathdoc.fr/item/SM_1992_73_2_a14/