On some multiple functionseries and solution of the uniqueness problem for Pringsheim convergence of multiple trigonometric series
Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 517-534 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Uniqueness theorems are proved for some multiple function series. A particular consequence of these theorems is the solution of a uniqueness problem for multiple trigonometric series. One result is the following proposition: any countable set is a set of uniqueness (for Pringsheim convergence) of $d$-fold trigonometric series $(d\geqslant 2)$.
@article{SM_1992_73_2_a13,
     author = {Sh. T. Tetunashvili},
     title = {On some multiple functionseries and solution of the uniqueness problem for {Pringsheim} convergence of multiple trigonometric series},
     journal = {Sbornik. Mathematics},
     pages = {517--534},
     year = {1992},
     volume = {73},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_73_2_a13/}
}
TY  - JOUR
AU  - Sh. T. Tetunashvili
TI  - On some multiple functionseries and solution of the uniqueness problem for Pringsheim convergence of multiple trigonometric series
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 517
EP  - 534
VL  - 73
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1992_73_2_a13/
LA  - en
ID  - SM_1992_73_2_a13
ER  - 
%0 Journal Article
%A Sh. T. Tetunashvili
%T On some multiple functionseries and solution of the uniqueness problem for Pringsheim convergence of multiple trigonometric series
%J Sbornik. Mathematics
%D 1992
%P 517-534
%V 73
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1992_73_2_a13/
%G en
%F SM_1992_73_2_a13
Sh. T. Tetunashvili. On some multiple functionseries and solution of the uniqueness problem for Pringsheim convergence of multiple trigonometric series. Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 517-534. http://geodesic.mathdoc.fr/item/SM_1992_73_2_a13/

[1] Geiringer H., “Trigonometrische Doppelreihen”, Monat. für Math., 28 (1918), 65–144 | MR

[2] Talalyan A. A., “O edinstvennosti kratnykh trigonometricheskikh ryadov”, Matem. sb., 132 (174) (1987), 104–130 | MR | Zbl

[3] Ash J., Welland G., “Convergence, uniqueness and summability of multiple trigonometric series”, Trans. Amer. Math. Soc., 163 (1972), 401–436 | DOI | MR | Zbl

[4] Gogoladze L. D., “Ob ogranichennosti skhodyaschikhsya srednikh kratnykh funktsionalnykh ryadov”, Matem. zametki, 34:6 (1983), 845–855 | MR | Zbl