On verbal factors of almost free groups in varieties
Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 501-516 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Under the assumption of the axiom of constructibility of set theory it is shown that for varieties of groups of exponent zero and for uncountable, regular, not weakly compact cardinals $k$ there can be constructed $k$-separable groups having no nontrivial decomposition into a verbal product.
@article{SM_1992_73_2_a12,
     author = {S. V. Rychkov},
     title = {On verbal factors of almost free groups in varieties},
     journal = {Sbornik. Mathematics},
     pages = {501--516},
     year = {1992},
     volume = {73},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_73_2_a12/}
}
TY  - JOUR
AU  - S. V. Rychkov
TI  - On verbal factors of almost free groups in varieties
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 501
EP  - 516
VL  - 73
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1992_73_2_a12/
LA  - en
ID  - SM_1992_73_2_a12
ER  - 
%0 Journal Article
%A S. V. Rychkov
%T On verbal factors of almost free groups in varieties
%J Sbornik. Mathematics
%D 1992
%P 501-516
%V 73
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1992_73_2_a12/
%G en
%F SM_1992_73_2_a12
S. V. Rychkov. On verbal factors of almost free groups in varieties. Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 501-516. http://geodesic.mathdoc.fr/item/SM_1992_73_2_a12/

[1] Neiman Kh., Mnogoobraziya grupp, Mir, M., 1969 | MR

[2] Eklof P., Teoretiko-mnozhestvennye metody v gomologicheskoi algebre i teorii abelevykh grupp, Mir, M., 1986 | Zbl

[3] Rychkov S. V., Primenenie teorii modelei k teorii grupp i modulei, Izd-vo Vladimirskogo gospedinstituta, Vladimir, 1989

[4] Rychkov S. V., “Primenenie aksiomaticheskoi teorii mnozhestv k teorii rasshirenii modulei”, Izv. vyssh. uchebnykh zavedenii (Matematika), 1987, no. 2, 62–69 | MR

[5] Higman G., “Almost free groups”, Proc. Lond. Math. Soc., 1 (1951), 284–290 | DOI | MR | Zbl

[6] Mekler A., “How to construct almost free groups”, Canad. J. Math., 32 (1980), 1206–1228 | MR | Zbl

[7] Shelah S., “A compactness theorem for singular cardinals, free algebras, Whitehead problem and transversals”, Israel J. Math., 21 (1975), 319–349 | DOI | MR | Zbl

[8] Gregory J., “Higher Souslin trees and generalized continuum hypothesis”, J. Symb. Logic, 41 (1976), 663–671 | DOI | MR | Zbl

[9] Eklof P., “On the existence of $k$-free abelian groups”, Proc. Amer. Math. Soc., 47 (1975), 65–72 | DOI | MR | Zbl

[10] Eklof P., Mekler A., “On constructing indecomposable groups in $L$”, J. Algebra, 49 (1977), 96–103 | DOI | MR | Zbl

[11] Hodges W., “In singular cardinality, locally free algebras are free”, Algebra Universalis, 12 (1981), 205–220 | DOI | MR | Zbl

[12] Pope A. L., “Almost free groups in varieties”, J. Algebra, 91 (1984), 36–52 | DOI | MR | Zbl

[13] Rychkov S. V., “Applications of the axiomatic set theory to groups theory”, Abstracts of $8^{\mathrm{th}}$ International Congress in Logic, Methodology and Philosophy of Science (Moscow, 17–22 August, 1987), 1, Moscow, 1987, 109–110

[14] Rychkov S. V., “O koltsakh endomorfizmov abelevykh grupp”, Algebra i logika, 27:3 (1988), 327–342 | MR | Zbl

[15] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1982 | MR | Zbl

[16] Eklof P., “The structure of $\omega$-separable abelian groups”, Trans. Amer. Math. Soc., 29:2 (1983), 497–523 | DOI | MR