Multipoint Padé approximants in the inverse Sturm–Liouville problem
Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 479-489 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of approximate solutions of the inverse Sturm–Liouville problem, based on a construction of multipoint Padé approximants. Corresponding convergence theorems are proved.
@article{SM_1992_73_2_a10,
     author = {A. A. Gonchar and N. N. Novikova and G. M. Henkin},
     title = {Multipoint {Pad\'e} approximants in the inverse {Sturm{\textendash}Liouville} problem},
     journal = {Sbornik. Mathematics},
     pages = {479--489},
     year = {1992},
     volume = {73},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_73_2_a10/}
}
TY  - JOUR
AU  - A. A. Gonchar
AU  - N. N. Novikova
AU  - G. M. Henkin
TI  - Multipoint Padé approximants in the inverse Sturm–Liouville problem
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 479
EP  - 489
VL  - 73
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1992_73_2_a10/
LA  - en
ID  - SM_1992_73_2_a10
ER  - 
%0 Journal Article
%A A. A. Gonchar
%A N. N. Novikova
%A G. M. Henkin
%T Multipoint Padé approximants in the inverse Sturm–Liouville problem
%J Sbornik. Mathematics
%D 1992
%P 479-489
%V 73
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1992_73_2_a10/
%G en
%F SM_1992_73_2_a10
A. A. Gonchar; N. N. Novikova; G. M. Henkin. Multipoint Padé approximants in the inverse Sturm–Liouville problem. Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 479-489. http://geodesic.mathdoc.fr/item/SM_1992_73_2_a10/

[1] Aki K., Richards P., Kolichestvennaya seismologiya, t. 1, 2, Mir, M., 1983

[2] Chadan K., Sabatier P. C., Inverse problems in quantum scattering theory, Second Edition, Springer - Verlag, 1989 ; Shadan K., Sabate P., Obratnye zadachi v kvantovoi teorii rasseyaniya, Mir, M., 1980 | MR | Zbl | MR

[3] Pekeris C. L., “An inverse boundary problem in seismology”, Physics, 5 (1934), 307–316 | DOI | Zbl

[4] Langer R. E., “On the connection formulas and the solutions of the wave equation”, Phys. Rev., 51 (1937), 669–676 | DOI | Zbl

[5] Marchenko V. A., Spektralnaya teoriya operatorov Shturma-Liuvillya, Naukova dumka, Kiev, 1972 | MR | Zbl

[6] Levitan B. M., Obratnye zadachi Shturma-Liuvillya, Nauka, M., 1984 | MR

[7] Gelfand I. M., Levitan B. M., “Ob opredelenii differentsialnogo uravneniya po ego spektralnoi funktsii”, Izv. AN SSSR. Ser. matem., 15 (1951), 309–360 | MR | Zbl

[8] Krein M. G., “Ob odnom metode effektivnogo resheniya obratnoi kraevoi zadachi”, DAN SSSR, 95:6 (1954), 767–770

[9] Zakharev B. I., Suzko A. A., Potentsialy i kvantovoe rasseyanie, Energoatomizdat, M., 1985 | MR

[10] Faddeev L. D., “Obratnaya zadacha kvantovoi teorii rasseyaniya. II”, Sovremennye problemy matematiki, 3, VINITI, 1974, 93–180 | MR

[11] Deift P., Trubowitz E., “Inverse scattering on the line”, Comm. Pure and Appl. Math., 32 (1979), 121–251 | DOI | MR | Zbl

[12] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl

[13] Beiker Dzh., Greivs-Morris P., Approksimatsiya Pade, Mir, M., 1986 | MR

[14] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973 | MR

[15] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[16] Rusak V. N., Ratsionalnye funktsii kak apparat priblizheniya, Izd-vo BGU im. V. I. Lenina, Minsk, 1979 | MR