Joint continuous selections of multivalued mappings with nonconvex values, and their applications
Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 319-339 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A continuous version of a theorem of Lyapunov on convexity for measures with values in a Banach space is proved, and then used to obtain two results on the existence of a common continuous selection of finitely many multivalued mappings with values in a space of Bochner-integrable functions. These results are applied to the investigation of properties of solutions of differential inclusions with $m$-accretive operators.
@article{SM_1992_73_2_a1,
     author = {V. V. Goncharov and A. A. Tolstonogov},
     title = {Joint continuous selections of multivalued mappings with nonconvex values, and their applications},
     journal = {Sbornik. Mathematics},
     pages = {319--339},
     year = {1992},
     volume = {73},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_73_2_a1/}
}
TY  - JOUR
AU  - V. V. Goncharov
AU  - A. A. Tolstonogov
TI  - Joint continuous selections of multivalued mappings with nonconvex values, and their applications
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 319
EP  - 339
VL  - 73
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1992_73_2_a1/
LA  - en
ID  - SM_1992_73_2_a1
ER  - 
%0 Journal Article
%A V. V. Goncharov
%A A. A. Tolstonogov
%T Joint continuous selections of multivalued mappings with nonconvex values, and their applications
%J Sbornik. Mathematics
%D 1992
%P 319-339
%V 73
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1992_73_2_a1/
%G en
%F SM_1992_73_2_a1
V. V. Goncharov; A. A. Tolstonogov. Joint continuous selections of multivalued mappings with nonconvex values, and their applications. Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 319-339. http://geodesic.mathdoc.fr/item/SM_1992_73_2_a1/

[1] Antosiewicz H. A., Cellina A., “Continuous selections and differential relations”, J. Diff. Equat., 19:2 (1975), 386–399 | DOI | MR

[2] Fryszkowski A., “Continuous selections for a class of nonconvex multivalued maps”, Studia math., 76:2 (1983), 163–174 | MR | Zbl

[3] Bressan A., Colombo G., “Extensions and selections of maps with decompasable values”, Studia math., 90:1 (1988), 69–86 | MR | Zbl

[4] Cellina A., Colombo G., Fonda A., “A continuous version of Liapunov's convexity theorem”, Ann. Inst. Henri Poincare, 5:1 (1988), 23–36 | MR | Zbl

[5] Dinculeanu N., Vector measures, Pergamen Press, Oxford, 1967 | MR

[6] Diestel J., Uhl J. J., “Vector measures”, Amer. math. Soc. Math. Surveys, 1977, no. 15 | MR

[7] Kupka J., “Radon - Nikodym theorems for vector-valued measures”, Trans. Amer. math. Soc., 169 (1972), 197–217 | DOI | MR | Zbl

[8] Kluvanek I., “The range of a vector-valued measure”, Math. Syst. Theory, 7:1 (1973), 44–54 | DOI | MR | Zbl

[9] Schechter E., “Evolution generated by continuous dissipative plus compact operators”, Bull. London math. Soc., 13 (1981), 303–308 | DOI | MR | Zbl

[10] Shvarts L., Analiz, t. 1, Mir, M., 1972

[11] Hiai Fumio, “Integrals, conditional Expectations and Martingales of multivalued functions”, J. Multivar. Anal., 7 (1977), 149–182 | DOI | MR | Zbl

[12] Phan Van Chuong, “A density theorem with an application in relaxation of nonconvex-valued differential equations”, Seminaire d'analyse convexe, 15 (1985), 2.1–2.22 | MR

[13] Ornelas A., Approximation of relaxed solutions for lower semicontinious differential inclusions, Preprint. Int. School for advanced studies. 102, ISAS, Trieste, 1986

[14] Bulgakov A. I., “K voprosu suschestvovaniya nepreryvnykh vetvei u mnogoznachnykh otobrazhenii s nevypuklymi obrazami v prostranstvakh summiruemykh funktsii”, Matem. sb., 136 (178) (1988), 292–300 | Zbl

[15] Himmelberg C. J., “Measurable relations”, Fund. Math., 87:1 (1975), 53–72 | MR | Zbl

[16] Himmelberg C. J., “Precompact contraction of metric uniformities and the continuity of $F(t,x)$”, Rend. Semin. Math. Univ. Padova, 50 (1973), 185–188 | MR

[17] Bourgin R. D., Geometric Aspects of convex sets with the Radon-Nikodym Property, Lect. Notes Math., 993, 1983 | MR | Zbl

[18] Suslov S. I., Nelineinyi beng-beng printsip. II: Beskonechnomernyi sluchai, Preprint Instituta matematiki SO AN SSSR. No 12, Novosibirsk, 1989

[19] Tolstonogov A. A., Differentsialnye vklyucheniya v banakhovom prostranstve, Nauka, Sibirskoe otdelenie, Novosibirsk, 1986 | MR | Zbl

[20] Barbu V., Nonlinear Semigroups and differential Equations in Banach spaces, Nordhoff, Leyden, 1976 | MR

[21] Vrabie I., “A compactness criterion in $C(0, T, X)$ for subsets of solutions of nonlinear evolution equations, governed by accretive operators”, Rend. Semin. mat. univ. e politch. Torino, 43:1 (1985), 149–157 | MR | Zbl

[22] Burbaki N., Topologicheskie vektornye prostranstva, IL, M., 1959

[23] Vrabie I., Compactness methods for nonlinear Evolutions, John Willey, New York, 1987 | MR | Zbl

[24] Edvards R., Funktsionalnyi analiz, Mir, M., 1969

[25] Kozlov R. I., “K teorii differentsialnykh uravnenii s razryvnymi pravymi chastyami”, Differents. uravneniya, 10:7 (1974), 1264–1275 | Zbl

[26] Cellina A., Marchi M. V., “Nonconvex pertubations of maximal monotone differential inclusions”, Isr. J. Math., 46:1–2 (1983), 1–11 | DOI | MR | Zbl

[27] Colombo G., Fonda A., Ornelas-Goncalves A., Lower semi-continuous perturbations of maximal monotone differential inclusions, Preprint. Int. School for advanced Studies. 49, ISAS, Trieste, 1986

[28] Kravvaritis D., Papageorgiou N., “Multivalued Pertubations of subdifferehtial type evolution equations in Hilbert spaces”, J. Diff. Equat., 76:2 (1988), 238–255 | DOI | MR | Zbl