@article{SM_1992_73_2_a1,
author = {V. V. Goncharov and A. A. Tolstonogov},
title = {Joint continuous selections of multivalued mappings with nonconvex values, and their applications},
journal = {Sbornik. Mathematics},
pages = {319--339},
year = {1992},
volume = {73},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1992_73_2_a1/}
}
TY - JOUR AU - V. V. Goncharov AU - A. A. Tolstonogov TI - Joint continuous selections of multivalued mappings with nonconvex values, and their applications JO - Sbornik. Mathematics PY - 1992 SP - 319 EP - 339 VL - 73 IS - 2 UR - http://geodesic.mathdoc.fr/item/SM_1992_73_2_a1/ LA - en ID - SM_1992_73_2_a1 ER -
V. V. Goncharov; A. A. Tolstonogov. Joint continuous selections of multivalued mappings with nonconvex values, and their applications. Sbornik. Mathematics, Tome 73 (1992) no. 2, pp. 319-339. http://geodesic.mathdoc.fr/item/SM_1992_73_2_a1/
[1] Antosiewicz H. A., Cellina A., “Continuous selections and differential relations”, J. Diff. Equat., 19:2 (1975), 386–399 | DOI | MR
[2] Fryszkowski A., “Continuous selections for a class of nonconvex multivalued maps”, Studia math., 76:2 (1983), 163–174 | MR | Zbl
[3] Bressan A., Colombo G., “Extensions and selections of maps with decompasable values”, Studia math., 90:1 (1988), 69–86 | MR | Zbl
[4] Cellina A., Colombo G., Fonda A., “A continuous version of Liapunov's convexity theorem”, Ann. Inst. Henri Poincare, 5:1 (1988), 23–36 | MR | Zbl
[5] Dinculeanu N., Vector measures, Pergamen Press, Oxford, 1967 | MR
[6] Diestel J., Uhl J. J., “Vector measures”, Amer. math. Soc. Math. Surveys, 1977, no. 15 | MR
[7] Kupka J., “Radon - Nikodym theorems for vector-valued measures”, Trans. Amer. math. Soc., 169 (1972), 197–217 | DOI | MR | Zbl
[8] Kluvanek I., “The range of a vector-valued measure”, Math. Syst. Theory, 7:1 (1973), 44–54 | DOI | MR | Zbl
[9] Schechter E., “Evolution generated by continuous dissipative plus compact operators”, Bull. London math. Soc., 13 (1981), 303–308 | DOI | MR | Zbl
[10] Shvarts L., Analiz, t. 1, Mir, M., 1972
[11] Hiai Fumio, “Integrals, conditional Expectations and Martingales of multivalued functions”, J. Multivar. Anal., 7 (1977), 149–182 | DOI | MR | Zbl
[12] Phan Van Chuong, “A density theorem with an application in relaxation of nonconvex-valued differential equations”, Seminaire d'analyse convexe, 15 (1985), 2.1–2.22 | MR
[13] Ornelas A., Approximation of relaxed solutions for lower semicontinious differential inclusions, Preprint. Int. School for advanced studies. 102, ISAS, Trieste, 1986
[14] Bulgakov A. I., “K voprosu suschestvovaniya nepreryvnykh vetvei u mnogoznachnykh otobrazhenii s nevypuklymi obrazami v prostranstvakh summiruemykh funktsii”, Matem. sb., 136 (178) (1988), 292–300 | Zbl
[15] Himmelberg C. J., “Measurable relations”, Fund. Math., 87:1 (1975), 53–72 | MR | Zbl
[16] Himmelberg C. J., “Precompact contraction of metric uniformities and the continuity of $F(t,x)$”, Rend. Semin. Math. Univ. Padova, 50 (1973), 185–188 | MR
[17] Bourgin R. D., Geometric Aspects of convex sets with the Radon-Nikodym Property, Lect. Notes Math., 993, 1983 | MR | Zbl
[18] Suslov S. I., Nelineinyi beng-beng printsip. II: Beskonechnomernyi sluchai, Preprint Instituta matematiki SO AN SSSR. No 12, Novosibirsk, 1989
[19] Tolstonogov A. A., Differentsialnye vklyucheniya v banakhovom prostranstve, Nauka, Sibirskoe otdelenie, Novosibirsk, 1986 | MR | Zbl
[20] Barbu V., Nonlinear Semigroups and differential Equations in Banach spaces, Nordhoff, Leyden, 1976 | MR
[21] Vrabie I., “A compactness criterion in $C(0, T, X)$ for subsets of solutions of nonlinear evolution equations, governed by accretive operators”, Rend. Semin. mat. univ. e politch. Torino, 43:1 (1985), 149–157 | MR | Zbl
[22] Burbaki N., Topologicheskie vektornye prostranstva, IL, M., 1959
[23] Vrabie I., Compactness methods for nonlinear Evolutions, John Willey, New York, 1987 | MR | Zbl
[24] Edvards R., Funktsionalnyi analiz, Mir, M., 1969
[25] Kozlov R. I., “K teorii differentsialnykh uravnenii s razryvnymi pravymi chastyami”, Differents. uravneniya, 10:7 (1974), 1264–1275 | Zbl
[26] Cellina A., Marchi M. V., “Nonconvex pertubations of maximal monotone differential inclusions”, Isr. J. Math., 46:1–2 (1983), 1–11 | DOI | MR | Zbl
[27] Colombo G., Fonda A., Ornelas-Goncalves A., Lower semi-continuous perturbations of maximal monotone differential inclusions, Preprint. Int. School for advanced Studies. 49, ISAS, Trieste, 1986
[28] Kravvaritis D., Papageorgiou N., “Multivalued Pertubations of subdifferehtial type evolution equations in Hilbert spaces”, J. Diff. Equat., 76:2 (1988), 238–255 | DOI | MR | Zbl