Best and optimal recovery methods for classes of harmonic functions
Sbornik. Mathematics, Tome 73 (1992) no. 1, pp. 111-133

Voir la notice de l'article provenant de la source Math-Net.Ru

The author considers problems of best recovery of a functional $L_u=\lambda_0u(x)+\dots+\lambda_ku^{(k)}(x)$, $x\in(-1,1)$, in the space $h_p$ of harmonic functions for $p=\infty$ or 2, in terms of the values of the functions and their derivatives at points of the interval $(-1,1)$. In the space $h_\infty$ the problem of constructing best quadrature formulas is solved. The existence of optimal quadrature formulas is proved, and, under certain conditions, the uniqueness of the optimal knots.
@article{SM_1992_73_1_a6,
     author = {K. Yu. Osipenko},
     title = {Best and optimal recovery methods for classes of harmonic functions},
     journal = {Sbornik. Mathematics},
     pages = {111--133},
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_73_1_a6/}
}
TY  - JOUR
AU  - K. Yu. Osipenko
TI  - Best and optimal recovery methods for classes of harmonic functions
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 111
EP  - 133
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1992_73_1_a6/
LA  - en
ID  - SM_1992_73_1_a6
ER  - 
%0 Journal Article
%A K. Yu. Osipenko
%T Best and optimal recovery methods for classes of harmonic functions
%J Sbornik. Mathematics
%D 1992
%P 111-133
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1992_73_1_a6/
%G en
%F SM_1992_73_1_a6
K. Yu. Osipenko. Best and optimal recovery methods for classes of harmonic functions. Sbornik. Mathematics, Tome 73 (1992) no. 1, pp. 111-133. http://geodesic.mathdoc.fr/item/SM_1992_73_1_a6/