Best and optimal recovery methods for classes of harmonic functions
Sbornik. Mathematics, Tome 73 (1992) no. 1, pp. 111-133
Voir la notice de l'article provenant de la source Math-Net.Ru
The author considers problems of best recovery of a functional
$L_u=\lambda_0u(x)+\dots+\lambda_ku^{(k)}(x)$, $x\in(-1,1)$, in the space $h_p$ of harmonic functions for $p=\infty$ or 2, in terms of the values of the functions and their derivatives at points of the interval $(-1,1)$. In the space $h_\infty$ the problem of constructing best quadrature formulas is solved. The existence of optimal quadrature formulas is proved, and, under certain conditions, the uniqueness of the optimal knots.
@article{SM_1992_73_1_a6,
author = {K. Yu. Osipenko},
title = {Best and optimal recovery methods for classes of harmonic functions},
journal = {Sbornik. Mathematics},
pages = {111--133},
publisher = {mathdoc},
volume = {73},
number = {1},
year = {1992},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1992_73_1_a6/}
}
K. Yu. Osipenko. Best and optimal recovery methods for classes of harmonic functions. Sbornik. Mathematics, Tome 73 (1992) no. 1, pp. 111-133. http://geodesic.mathdoc.fr/item/SM_1992_73_1_a6/