Best and optimal recovery methods for classes of harmonic functions
Sbornik. Mathematics, Tome 73 (1992) no. 1, pp. 111-133 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author considers problems of best recovery of a functional $L_u=\lambda_0u(x)+\dots+\lambda_ku^{(k)}(x)$, $x\in(-1,1)$, in the space $h_p$ of harmonic functions for $p=\infty$ or 2, in terms of the values of the functions and their derivatives at points of the interval $(-1,1)$. In the space $h_\infty$ the problem of constructing best quadrature formulas is solved. The existence of optimal quadrature formulas is proved, and, under certain conditions, the uniqueness of the optimal knots.
@article{SM_1992_73_1_a6,
     author = {K. Yu. Osipenko},
     title = {Best and optimal recovery methods for classes of harmonic functions},
     journal = {Sbornik. Mathematics},
     pages = {111--133},
     year = {1992},
     volume = {73},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_73_1_a6/}
}
TY  - JOUR
AU  - K. Yu. Osipenko
TI  - Best and optimal recovery methods for classes of harmonic functions
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 111
EP  - 133
VL  - 73
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1992_73_1_a6/
LA  - en
ID  - SM_1992_73_1_a6
ER  - 
%0 Journal Article
%A K. Yu. Osipenko
%T Best and optimal recovery methods for classes of harmonic functions
%J Sbornik. Mathematics
%D 1992
%P 111-133
%V 73
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1992_73_1_a6/
%G en
%F SM_1992_73_1_a6
K. Yu. Osipenko. Best and optimal recovery methods for classes of harmonic functions. Sbornik. Mathematics, Tome 73 (1992) no. 1, pp. 111-133. http://geodesic.mathdoc.fr/item/SM_1992_73_1_a6/

[1] Micchelli C. A., Rivlin T. J., “A survey of optimal recovery”, Optimal estimation in approximation theory, Plenum Press, N. Y., 1977, 1–54 | MR

[2] Micchelli C. A., Rivlin T. J., “Lectures on optimal recovery”, Lect. Notes Math., 1129 (1985), 21–93 | DOI | MR

[3] Traub Dzh., Vozhnyakovskii Kh., Obschaya teoriya optimalnykh algoritmov, Mir, M., 1983 | MR | Zbl

[4] Osipenko K. Yu., Stesin M. I., “O zadachakh vosstanovleniya v prostranstvakh Khardi i Bergmana”, Matem. zametki, 49:4 (1991), 95–104 | MR | Zbl

[5] Magaril-Ilyaev G. G., Chan Tkhi Le, “K zadache optimalnogo vosstanovleniya funktsionalov”, UMN, 42:2 (1987), 237–238 | MR

[6] Diendonné J., “6. Recherches sur quelques problems relatifs aux polinomes et aux fonctions bornées d'une variable complexe”, Ann. Ecole Norm. sup., 48:3 (1931), 247–358

[7] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[8] Osipenko K. Yu., “Optimalnaya interpolyatsiya analiticheskikh funktsii”, Matem. zametki, 12:4 (1972), 465–476 | MR | Zbl

[9] Akhiezer N. I., Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | Zbl

[10] Osipenko K. Yu., “O nailuchshikh i optimalnykh kvadraturnykh formulakh na klassakh ogranichennykh analiticheskikh funktsii”, Izv. AN SSSR. Ser. matem., 52:1 (1988), 79–99 | Zbl

[11] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR

[12] Bojanov B. D., “Extremal problems in a set of polinomials with fixed multiplicities of zeros”, C. R. Acad. Bulgare Sci., 31:4 (1978), 377–380 | MR