Asymptotics of the solution of the Dirichlet problem for an equation with rapidly oscillating coefficients in a rectangle
Sbornik. Mathematics, Tome 73 (1992) no. 1, pp. 79-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A complete asymptotic expansion is found for the solution of the Dirichlet problem for a second-order scalar equation in a rectangle. The exponents of the powers of $\varepsilon$ in the series are (generally speaking, nonintegral) nonnegative numbers of the form $p+q_1\alpha_1\pi^{-1}+\dots+q_4\alpha_4\pi^{-1}$, where $p$, $q_j=0,1,\dots$, and $\alpha_j$ is the opening of the angle which is transformed into a quarter plane under the change of coordinates taking the Laplace operator into the principal part of the averaged operator at the vertex $O_j$ of the rectangle. The coefficients of the series for rational $\alpha_j\pi^-1$ may depend in polynomial fashion on $\log\varepsilon$. It is shown that the algorithm also does not change in the case of a system of differential equations or in the case of a domain bounded by polygonal lines with vertices at the nodes of an $\varepsilon$-lattice. The spectral problem is considered; asymptotic formulas for the eigenvalue $\lambda(\varepsilon)$ and the eigenfunction are obtained under the assumption that $\lambda(0)$ is a simple eigenvalue of the averaged Dirichlet problem.
@article{SM_1992_73_1_a5,
     author = {S. A. Nazarov},
     title = {Asymptotics of the solution of the {Dirichlet} problem for an equation with rapidly oscillating coefficients in a~rectangle},
     journal = {Sbornik. Mathematics},
     pages = {79--110},
     year = {1992},
     volume = {73},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_73_1_a5/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Asymptotics of the solution of the Dirichlet problem for an equation with rapidly oscillating coefficients in a rectangle
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 79
EP  - 110
VL  - 73
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1992_73_1_a5/
LA  - en
ID  - SM_1992_73_1_a5
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Asymptotics of the solution of the Dirichlet problem for an equation with rapidly oscillating coefficients in a rectangle
%J Sbornik. Mathematics
%D 1992
%P 79-110
%V 73
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1992_73_1_a5/
%G en
%F SM_1992_73_1_a5
S. A. Nazarov. Asymptotics of the solution of the Dirichlet problem for an equation with rapidly oscillating coefficients in a rectangle. Sbornik. Mathematics, Tome 73 (1992) no. 1, pp. 79-110. http://geodesic.mathdoc.fr/item/SM_1992_73_1_a5/

[1] Bakhvalov N. S., “Osrednenie differentsialnykh uravnenii s bystroostsilliruyuschimi koeffitsientami”, DAN SSSR, 221:3 (1975), 516–519 | MR | Zbl

[2] Bensoussan A., Lions J.-J., Papanicolaou G., Asymptotic methods in periodic structures, North Holland Publ. Corp., Amsterdam, 1978

[3] Zhikov V. V., Kozlov S. M., Oleinik O. A., Kha Ten Ngoan, “Usrednenie i $G$-skhodimost differentsialnykh operatorov”, UMN, 34:5 (1979), 65–133 | MR | Zbl

[4] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[5] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[6] Nazarov S. A., Paukshto M. V., Diskretnye modeli i osrednenie v teorii uprugosti, Izd-vo LGU, L., 1984

[7] Panasenko G. P., “Asimptotiki vysshikh poryadkov reshenii zadach o kontakte periodicheskikh struktur”, Matem. sb., 110 (152) (1979), 505–538 | MR | Zbl

[8] Iosifyan G. A., Oleinik O. A., Panasenko G. P., “Asimptoticheskoe razlozhenie resheniya sistemy teorii uprugosti s bystroostsilliruyuschimi koeffitsientami”, DAN SSSR, 266:1 (1982), 18–22 | MR

[9] Mazya V. G., Nazarov S. A., “Paradoksy predelnogo perekhoda v resheniyakh kraevykh zadach pri approksimatsii gladkikh oblastei mnogougolnymi”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1156–1177 | MR

[10] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. MMO, 26 (1967), 209–292

[11] Butuzov V. F., “Asimptotika resheniya uravneniya $\mu^2\Delta u-k(x,y)^2u=f(x,y)$ v pryamougolnoi oblasti”, Differents. uravneniya, 9:9 (1973), 1954–1960 | MR

[12] Ilin A. M., Lelikova E. F., “Metod sraschivaniya asimptoticheskikh predstavlenii dlya uravneniya $\varepsilon\Delta u-a(x,y)u_y=f(x,y)$ v pryamougolnike”, Matem. sb., 96 (138) (1975), 568–583 | MR

[13] Ilin A. M., “Kraevaya zadacha dlya ellipticheskogo uravneniya vtorogo poryadka v oblasti s schelyu. 1: Dvumernyi sluchai”, Matem. sb., 103(145) (1977), 265–284

[14] Fedoryuk M. V., “Zadacha Dirikhle dlya operatora Laplasa vo vneshnosti tonkogo tela vrascheniya”, Teoriya kubaturnykh formul i prilozheniya funktsionalnogo analiza k zadacham matematicheskoi fiziki, Tr. seminara S. L. Soboleva, no. 1, Izd-vo AN SSSR, Novosibirsk, 1980, 113–141 | MR

[15] Mazya V. G., Nazarov S. A., Plamenevskii B. A., Asimptotika reshenii ellipticheskikh kraevykh zadach pri singulyarnykh vozmuscheniyakh oblasti, Izd-vo TGU, Tbilisi, 1981 | MR

[16] Nazarov S. A., “Metod Vishika - Lyusternika dlya ellipticheskikh kraevykh zadach v oblastyakh s konicheskimi tochkami. 2: Zadacha v ogranichennoi oblasti”, Sib. matem. zhurn., 22:5 (1981), 132–152 | MR | Zbl

[17] Nazarov S. A., “Zadacha Dirikhle dlya ellipticheskoi sistemy s periodicheskimi koeffitsientami v uglovoi oblasti”, Vestn. LGU. Ser. 1, 1990, no. 1, 32–35 | Zbl

[18] Ilin A. M., Nasirov K. Kh., “Metod soglasovaniya asimptoticheskikh razlozhenii dlya odnoi ellipticheskoi kraevoi zadachi s malym parametrom”, Differents. uravneniya s malym parametrom, Izd-vo AN SSSR, Sverdlovsk, 1980, 8–15 | MR

[19] Nazarov S. A., “Metod M. I. Vishika - L. A. Lyusternika v oblastyakh s konicheskimi tochkami”, DAN SSSR, 245 (1979), 1307–1311 | Zbl

[20] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Ob asimptotike reshenii ellipticheskikh kraevykh zadach pri variatsii oblasti vblizi konicheskikh tochek”, DAN SSSR, 249:1 (1979), 94–96 | MR

[21] Nazarov S. A., Vvedenie v asimptoticheskie metody teorii uprugosti, Izd-vo LGU, L., 1983

[22] Nazarov S. A., “Asimptotika resheniya zadachi Dirikhle v pryamougolnike dlya uravneniya s bystroostsilliruyuschimi koeffitsientami”, UMN, 40:5 (1985), 219–220

[23] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI

[24] Mazya V. G., Plamenevskii B. A., “Otsenki v $L_p$ i v klassakh Geldera i printsip Miranda - Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 81 (1978), 25–82 | DOI

[25] Kondratev V. A., Oleinik O. A., “Kraevye zadachi dlya uravnenii s chastnymi proizvodnymi v negladkikh oblastyakh”, UMN, 38:2 (1983), 3–76 | MR

[26] Nazarov S. A., “Ellipticheskie kraevye zadachi s periodicheskimi koeffitsientami v tsilindre”, Izv. AN SSSR. Ser. matem., 45:1 (1981), 101–112 | MR | Zbl

[27] Kuchment P. A., “Teoriya Floke dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, UMN, 37:4 (1982), 3–52 | MR | Zbl

[28] Koplienko L. S., Plamenevskii B. A., “O printsipe izlucheniya dlya periodicheskikh zadach”, Differents. uravneniya, 19:10 (1983), 1713–1723 | MR | Zbl

[29] Nazarov S. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach s periodicheskimi koeffitsientami”, Vestn. LGU, 1985, no. 15, 16–22 | Zbl

[30] Oleinik O. A., Iosifyan G. A., “O povedenii na beskonechnosti reshenii uravnenii vtorogo poryadka v oblasti s nekompaktnoi granitsei”, Matem. sb., 112 (154) (1980), 588–610 | MR | Zbl

[31] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[32] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[33] Agmon S., Duglis A., Nirenberg L., Otsenki vblizi granitsy dlya reshenii ellipticheskikh uravnenii v chastnykh proizvodnykh, Mir, M., 1965 | MR

[34] Nazarov S. A., “Ob asimptotike po parametru resheniya ellipticheskoi kraevoi zadachi s periodicheskimi koeffitsientami v tsilindre”, Differen. uravneniya i ikh primeneniya, no. 30, Izd-vo AN LitSSR, Vilnyus, 1981, 27–46

[35] Slutskii A. S., Stepennoi pogranichnyi sloi v zadache osredneniya vyrozhdayuschegosya ellipticheskogo uravneniya, Dep. v VINITI No 3358-86, 95 pp.

[36] Nazarov S. A., Formalizm postroeniya i obosnovaniya asimptoticheskikh razlozhenii reshenii ellipticheskikh kraevykh zadach s parametrom, Dep. v VINITI, No 2194-82, 68 pp. | MR | Zbl

[37] Panasenko G. P., Reztsov M. V., “Osrednenie trekhmernoi zadachi teorii uprugosti v neodnorodnoi plastine”, DAN SSSR, 294:5 (1987), 1061–1065 | MR | Zbl

[38] Shamaev A. S., “Spektralnye zadachi v teorii usredneniya i $G$-skhodimosti”, DAN SSSR, 259:2 (1981), 294–299 | MR | Zbl

[39] Oleinik O. A., Zhamaev A. S., Yosifian G. A., “Homogenization of eigenvalue problems in perforated domains for elliptic equations with non-uniformly oscillating coefficients”, Current topics in partial differential equations, Kino kuniya corp. LTD. Tokyo, 1980, 187–216

[40] Iosifyan G. A., Oleinik O. A., Shamaev A. S., “O sobstvennykh znacheniyakh kraevykh zadach dlya sistemy teorii uprugosti s bystro ostsilliruyuschimi koeffitsientami v perforirovannoi oblasti”, Matem. sb., 132(174):4 (1987), 517–530 | MR | Zbl

[41] Iosifyan G. A., Oleinik O. A., Shamaev A. S., “Asimptoticheskoe razlozhenie sobstvennykh znachenii i sobstvennykh funktsii zadachi Shturma - Liuvillya s bystroostsilliruyuschimi koeffitsientami”, Vestn. MGU. Matem., mekh., 1985, no. 6, 37–46 | MR

[42] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5 (1957), 3–122 | MR | Zbl

[43] Vishik M. I., Lyusternik L. A., “Reshenie nekotorykh zadach o vozmuscheniyakh v sluchae matrits i samosopryazhennykh i nesamosopryazhennykh differentsialnykh uravnenii”, UMN, 15:3 (1960), 3–80 | MR | Zbl

[44] Nazarov S. A., “Obosnovanie asimptoticheskikh razlozhenii sobstvennykh chisel nesamosopryazhennykh singulyarno vozmuschennykh ellipticheskikh kraevykh zadach”, Matem. sb., 129 (171) (1986), 307–337 | MR