Nontrivial expansions of zero in absolutely representing systems. Application to convolution operators
Sbornik. Mathematics, Tome 73 (1992) no. 1, pp. 49-66

Voir la notice de l'article provenant de la source Math-Net.Ru

By using a general representation of nontrivial expansions of zero in absolutely representing systems of the form $\{E_\rho(\lambda_kz)\}_{k=1}^\infty$, where $\rho>0$, $E_\rho(z)=\sum\limits_{n=0}^\infty\dfrac{z^n}{\Gamma(1+\frac n\rho)}$ is the Mittag-Leffler function, and $(\lambda_k)_{k=1}^\infty$ are complex numbers, the author obtains a number of results in the theory of $\rho$-convolution operators in spaces of functions that are analytic in $\rho$-convex domains (a description of the general solution of a homogeneous $\rho$-convolution equation and of systems of such equations, a topological description of the kernel of a $\rho$-convolution operator, the construction of principal solutions, and a criterion for factorization).
@article{SM_1992_73_1_a3,
     author = {Yu. F. Korobeinik},
     title = {Nontrivial expansions of zero in absolutely representing systems. {Application} to convolution operators},
     journal = {Sbornik. Mathematics},
     pages = {49--66},
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_73_1_a3/}
}
TY  - JOUR
AU  - Yu. F. Korobeinik
TI  - Nontrivial expansions of zero in absolutely representing systems. Application to convolution operators
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 49
EP  - 66
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1992_73_1_a3/
LA  - en
ID  - SM_1992_73_1_a3
ER  - 
%0 Journal Article
%A Yu. F. Korobeinik
%T Nontrivial expansions of zero in absolutely representing systems. Application to convolution operators
%J Sbornik. Mathematics
%D 1992
%P 49-66
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1992_73_1_a3/
%G en
%F SM_1992_73_1_a3
Yu. F. Korobeinik. Nontrivial expansions of zero in absolutely representing systems. Application to convolution operators. Sbornik. Mathematics, Tome 73 (1992) no. 1, pp. 49-66. http://geodesic.mathdoc.fr/item/SM_1992_73_1_a3/