Lower semi-Taylor mappings and sufficient conditions for an extremum
Sbornik. Mathematics, Tome 73 (1992) no. 1, pp. 257-271
Cet article a éte moissonné depuis la source Math-Net.Ru
Sufficient conditions for an extremum of second-order type are considered on the basis of the concepts (introduced in the paper) of $(\tau,{\|\ \ \|})$-Taylor mappings and lower $(\tau,{\|\ \ \|})$-semi-Taylor mappings, where ${\|\ \ \|}$ is a norm in a linear space $X$, and $\tau$ is a topology in a subset $U\subset X$. Examples are given illustrating the novelty of the results obtained. Among the references devoted to sufficient conditions for an extremum, [1] (§ 3.4) and [2] (§ 6) should be mentioned.
@article{SM_1992_73_1_a13,
author = {M. F. Sukhinin},
title = {Lower {semi-Taylor} mappings and sufficient conditions for an extremum},
journal = {Sbornik. Mathematics},
pages = {257--271},
year = {1992},
volume = {73},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1992_73_1_a13/}
}
M. F. Sukhinin. Lower semi-Taylor mappings and sufficient conditions for an extremum. Sbornik. Mathematics, Tome 73 (1992) no. 1, pp. 257-271. http://geodesic.mathdoc.fr/item/SM_1992_73_1_a13/
[1] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR
[2] Levitin E. S., Milyutin A. A., Osmolovskii N. P., “Usloviya vysshikh poryadkov lokalnogo minimuma v zadachakh s ogranicheniyami”, UMN, 33:6 (1978), 85–148 | MR
[3] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR
[4] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[5] Averbukh V. I., Smolyanov O. G., Dopolnenie k kn.: A. Frelikher, V. Bukher, Differentsialnoe ischislenie v vektornykh prostranstvakh bez normy, Mir, M., 1970 | MR
[6] Sova M., “Usloviya differentsiruemosti v lineinykh topologicheskikh prostranstvakh”, Chekh. matem. zhurn., 16:3 (1966), 339–362 | MR | Zbl