A uniqueness theorem for subharmonic functions of finite order
Sbornik. Mathematics, Tome 73 (1992) no. 1, pp. 195-210 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $u$ and $v$ be subharmonic functions of finite order on $\mathbf R^m$. The main theorem of this paper shows that, if $u\leqslant v$, the relation "$\leqslant$" is preserved, in a certain sense, for mass distributions $\mu_u$ and $\mu_v$. This result yields new uniqueness theorems for both subharmonic and entire functions on the complex plane. Corollaries include a broad class of sufficient conditions for the completeness of systems $\{e^{\lambda_nz}\}$ of exponential functions in a complex domain $G$. The conditions for completeness are stated entirely in terms of the distribution of the points of the sequence $\{\lambda_n\}$ in the neighborhood of infinity and in terms of the geometric properties (mixed areas) of $G$.
@article{SM_1992_73_1_a10,
     author = {B. N. Khabibullin},
     title = {A~uniqueness theorem for subharmonic functions of finite order},
     journal = {Sbornik. Mathematics},
     pages = {195--210},
     year = {1992},
     volume = {73},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_73_1_a10/}
}
TY  - JOUR
AU  - B. N. Khabibullin
TI  - A uniqueness theorem for subharmonic functions of finite order
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 195
EP  - 210
VL  - 73
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1992_73_1_a10/
LA  - en
ID  - SM_1992_73_1_a10
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%T A uniqueness theorem for subharmonic functions of finite order
%J Sbornik. Mathematics
%D 1992
%P 195-210
%V 73
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1992_73_1_a10/
%G en
%F SM_1992_73_1_a10
B. N. Khabibullin. A uniqueness theorem for subharmonic functions of finite order. Sbornik. Mathematics, Tome 73 (1992) no. 1, pp. 195-210. http://geodesic.mathdoc.fr/item/SM_1992_73_1_a10/

[1] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980

[2] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[3] Evgrafov M. A., Asimptoticheskie otsenki i tselye funktsii, Nauka, M., 1979 | MR | Zbl

[4] Grishin A. F., Sodin M. L., “Rost po luchu, raspredelenie kornei po argumentam tseloi funktsii konechnogo poryadka i odna teorema edinstvennosti”, Teoriya funktsii, funktsion. analiz i ikh prilozheniya, no. 50, Kharkov, 1988, 47–61 | MR | Zbl

[5] Malliavin P., Rubel L. A., “On small entire functions of exponential type with given zeros”, Bull. Soc. math. France, 89:2 (1961), 175–201 | MR

[6] Kondratyuk A. A., “O metode sfericheskikh garmonik dlya subgarmonicheskikh funktsii”, Matem. sb., 116 (158) (1981), 147–165 | MR | Zbl

[7] Kondratyuk A. A., “Sfericheskie garmoniki i subgarmonicheskie funktsii”, Matem. sb., 125 (167) (1984), 147–166 | MR | Zbl

[8] Azarin V. S., “Ob indikatore funktsii, subgarmonicheskoi v mnogomernom prostranstve”, Matem. sb., 58 (100) (1962), 87–94 | MR | Zbl

[9] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR

[10] Pogorelov A. V., Mnogomernaya problema Minkovskogo, Nauka, M., 1975 | MR | Zbl

[11] Buzeman G., Vypuklye poverkhnosti, Nauka, M., 1964 | MR

[12] Brelo M., Osnovy klassicheskoi teorii potentsiala, Mir, M., 1964 | MR | Zbl

[13] Kostrikin A. I., Manin Yu. I., Lineinaya algebra i geometriya, Nauka, M., 1986 | MR

[14] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl

[15] Khabibullin B. N., “O roste tselykh funktsii eksponentsialnogo tipa vdol mnimoi osi”, Matem. sb., 180 (222), 706–719 | MR | Zbl

[16] Melnik Yu. I., “O predstavlenii regulyarnykh funktsii ryadami Dirikhle v zamknutom kruge”, Matem. sb., 97(139):4(8) (1975), 493–502 | MR | Zbl

[17] Krasichkov-Ternovskii I. F., “Ob absolyutnoi polnote sistem eksponent na otrezke”, Matem. sb., 131 (173) (1986), 309–322 | MR

[18] Azarin V. S., Giner V. B., “O polnote sistem eksponent v vypuklykh oblastyakh”, DAN, 305:1 (1989), 11–14 | MR | Zbl

[19] Santalo L., Integralnaya geometriya i geometricheskie veroyatnosti, Nauka, M., 1983 | MR | Zbl