A~uniqueness theorem for subharmonic functions of finite order
Sbornik. Mathematics, Tome 73 (1992) no. 1, pp. 195-210

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $u$ and $v$ be subharmonic functions of finite order on $\mathbf R^m$. The main theorem of this paper shows that, if $u\leqslant v$, the relation "$\leqslant$" is preserved, in a certain sense, for mass distributions $\mu_u$ and $\mu_v$. This result yields new uniqueness theorems for both subharmonic and entire functions on the complex plane. Corollaries include a broad class of sufficient conditions for the completeness of systems $\{e^{\lambda_nz}\}$ of exponential functions in a complex domain $G$. The conditions for completeness are stated entirely in terms of the distribution of the points of the sequence $\{\lambda_n\}$ in the neighborhood of infinity and in terms of the geometric properties (mixed areas) of $G$.
@article{SM_1992_73_1_a10,
     author = {B. N. Khabibullin},
     title = {A~uniqueness theorem for subharmonic functions of finite order},
     journal = {Sbornik. Mathematics},
     pages = {195--210},
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_73_1_a10/}
}
TY  - JOUR
AU  - B. N. Khabibullin
TI  - A~uniqueness theorem for subharmonic functions of finite order
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 195
EP  - 210
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1992_73_1_a10/
LA  - en
ID  - SM_1992_73_1_a10
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%T A~uniqueness theorem for subharmonic functions of finite order
%J Sbornik. Mathematics
%D 1992
%P 195-210
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1992_73_1_a10/
%G en
%F SM_1992_73_1_a10
B. N. Khabibullin. A~uniqueness theorem for subharmonic functions of finite order. Sbornik. Mathematics, Tome 73 (1992) no. 1, pp. 195-210. http://geodesic.mathdoc.fr/item/SM_1992_73_1_a10/