On unique recoverability of convex and visible compacta from their projections
Sbornik. Mathematics, Tome 73 (1992) no. 1, pp. 1-10

Voir la notice de l'article provenant de la source Math-Net.Ru

The question is: Under what conditions does the congruence of the projections of two compacta on every two-dimensional plane imply the congruence of the compacta themselves? The results are extended to the cases of $(n-2)$-visible and $(n-2)$-convex compacta, and even to the case when it is known the projections of the compacta are merely similar.
@article{SM_1992_73_1_a0,
     author = {V. P. Golubyatnikov},
     title = {On unique recoverability of convex and visible compacta from their projections},
     journal = {Sbornik. Mathematics},
     pages = {1--10},
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_73_1_a0/}
}
TY  - JOUR
AU  - V. P. Golubyatnikov
TI  - On unique recoverability of convex and visible compacta from their projections
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 1
EP  - 10
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1992_73_1_a0/
LA  - en
ID  - SM_1992_73_1_a0
ER  - 
%0 Journal Article
%A V. P. Golubyatnikov
%T On unique recoverability of convex and visible compacta from their projections
%J Sbornik. Mathematics
%D 1992
%P 1-10
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1992_73_1_a0/
%G en
%F SM_1992_73_1_a0
V. P. Golubyatnikov. On unique recoverability of convex and visible compacta from their projections. Sbornik. Mathematics, Tome 73 (1992) no. 1, pp. 1-10. http://geodesic.mathdoc.fr/item/SM_1992_73_1_a0/