Asymptotic properties and weighted estimates for Chebyshev--Hahn orthogonal polynomials
Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 387-401

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic behavior is investigated for the classical Chebyshev–Hahn orthogonal polynomials $Q_n(x;\alpha,\beta,N)$ $(0\leqslant n\leqslant N-1)$, which form an orthogonal system on the set $\{0,1\dots,N-1\}$ with the weight $$ \rho(x)=c\frac{\Gamma(x+\alpha+1)\Gamma(N-x+\beta)}{\Gamma(x+1)\Gamma(N-x)} \quad (\alpha,\beta>-1) $$ and are such that $Q_n(0,\alpha,\beta,N)=1$. A weighted estimate is established as a corollary.
@article{SM_1992_72_2_a6,
     author = {I. I. Sharapudinov},
     title = {Asymptotic properties and weighted estimates for {Chebyshev--Hahn} orthogonal polynomials},
     journal = {Sbornik. Mathematics},
     pages = {387--401},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_72_2_a6/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - Asymptotic properties and weighted estimates for Chebyshev--Hahn orthogonal polynomials
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 387
EP  - 401
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1992_72_2_a6/
LA  - en
ID  - SM_1992_72_2_a6
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T Asymptotic properties and weighted estimates for Chebyshev--Hahn orthogonal polynomials
%J Sbornik. Mathematics
%D 1992
%P 387-401
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1992_72_2_a6/
%G en
%F SM_1992_72_2_a6
I. I. Sharapudinov. Asymptotic properties and weighted estimates for Chebyshev--Hahn orthogonal polynomials. Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 387-401. http://geodesic.mathdoc.fr/item/SM_1992_72_2_a6/