Asymptotic properties and weighted estimates for Chebyshev–Hahn orthogonal polynomials
Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 387-401 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotic behavior is investigated for the classical Chebyshev–Hahn orthogonal polynomials $Q_n(x;\alpha,\beta,N)$ $(0\leqslant n\leqslant N-1)$, which form an orthogonal system on the set $\{0,1\dots,N-1\}$ with the weight $$ \rho(x)=c\frac{\Gamma(x+\alpha+1)\Gamma(N-x+\beta)}{\Gamma(x+1)\Gamma(N-x)} \quad (\alpha,\beta>-1) $$ and are such that $Q_n(0,\alpha,\beta,N)=1$. A weighted estimate is established as a corollary.
@article{SM_1992_72_2_a6,
     author = {I. I. Sharapudinov},
     title = {Asymptotic properties and weighted estimates for {Chebyshev{\textendash}Hahn} orthogonal polynomials},
     journal = {Sbornik. Mathematics},
     pages = {387--401},
     year = {1992},
     volume = {72},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_72_2_a6/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - Asymptotic properties and weighted estimates for Chebyshev–Hahn orthogonal polynomials
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 387
EP  - 401
VL  - 72
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1992_72_2_a6/
LA  - en
ID  - SM_1992_72_2_a6
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T Asymptotic properties and weighted estimates for Chebyshev–Hahn orthogonal polynomials
%J Sbornik. Mathematics
%D 1992
%P 387-401
%V 72
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1992_72_2_a6/
%G en
%F SM_1992_72_2_a6
I. I. Sharapudinov. Asymptotic properties and weighted estimates for Chebyshev–Hahn orthogonal polynomials. Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 387-401. http://geodesic.mathdoc.fr/item/SM_1992_72_2_a6/

[1] Sharapudinov I. I., “Asimptoticheskie svoistva ortogonalnykh mnogochlenov Khana diskretnoi peremennoi”, Matem. sb., 180 (222) (1989), 1259–1277 | MR | Zbl

[2] Sharapudinov I. I., “Nekotorye svoistva mnogochlenov, ortogonalnykh na konechnoi sisteme tochek”, Izv. VUZov. Matematika, 1983, no. 5, 85–88 | MR | Zbl

[3] Sharapudinov I. I., “Vesovye otsenki mnogochlenov Khana”, Teoriya funktsii i priblizhenii, Tr. Sarat. zimnei shk., ch. 2 (24 yanvarya–5 fevralya 1982 g.), Izd-vo Sarat. un-ta, Saratov, 1983, 150–154 | MR

[4] Sharapudinov I. I., “Asimptoticheskie svoistva i vesovye otsenki mnogochlenov Khana”, Izv. VUZov. Matematika, 1985, no. 5, 78–90 | MR

[5] Karlin S., McGregor J. L., “The Hahn polynomials, formulas and an application”, Scr. math., 26 (1961), 33–46 | MR | Zbl

[6] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962

[7] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, t. 1, Nauka, M., 1973