Existence of a solution of a modification of a system of equations of magnetohydrodynamics
Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 373-385 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The time-dependent system of equations describing plane-parallel motion of Ostwald–de Waele media is considered in the approximation of magnetohydrodynamics. The system differs from the classical equations of magnetohydrodynamics by the presence in the leading term of power nonlinearities. The initial boundary value problem is solved with the conditions of diffraction of the physical characteristics on the boundary separating the media. Existence of a generalized solution is proved on the basis of the Faedo–Galerkin method and the method of monotone operators.
@article{SM_1992_72_2_a5,
     author = {V. N. Samokhin},
     title = {Existence of a~solution of a~modification of a~system of equations of magnetohydrodynamics},
     journal = {Sbornik. Mathematics},
     pages = {373--385},
     year = {1992},
     volume = {72},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_72_2_a5/}
}
TY  - JOUR
AU  - V. N. Samokhin
TI  - Existence of a solution of a modification of a system of equations of magnetohydrodynamics
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 373
EP  - 385
VL  - 72
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1992_72_2_a5/
LA  - en
ID  - SM_1992_72_2_a5
ER  - 
%0 Journal Article
%A V. N. Samokhin
%T Existence of a solution of a modification of a system of equations of magnetohydrodynamics
%J Sbornik. Mathematics
%D 1992
%P 373-385
%V 72
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1992_72_2_a5/
%G en
%F SM_1992_72_2_a5
V. N. Samokhin. Existence of a solution of a modification of a system of equations of magnetohydrodynamics. Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 373-385. http://geodesic.mathdoc.fr/item/SM_1992_72_2_a5/

[1] Ladyzhenskaya O. A., Solonnikov V. A., “Reshenie nekotorykh nestatsionarnykh zadach magnitnoi gidrodinamiki dlya vyazkoi neszhimaemoi zhidkosti”, Tr. MIAN, 59 (1960), 115–173

[2] Solonnikov V. A., “O nekotorykh statsionarnykh kraevykh zadachakh dlya uravnenii magnitnoi gidrodinamiki”, Tr. MIAN, 59 (1960), 174–187 | MR

[3] Sanchez-Palencia E., “Quelques résultats d'existence et d'unicité pour les ecoulements magnétohydrodynamiques non stationnaires”, J. Mécanique, 8 (1969), 509–541 | MR | Zbl

[4] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[5] Kondratev V. A., Oleinik O. A., “Kraevye zadachi dlya sistemy teorii uprugosti v neogranichennykh oblastyakh. Neravenstva Korna”, UMN, 43:5 (1988), 55–98

[6] Temam R., Uravneniya Nave-Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl

[7] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl

[8] Ladyzhenskaya O. A., “O novykh uravneniyakh dlya opisaniya dvizhenii vyazkikh neszhimaemykh zhidkostei i razreshimosti v tselom dlya nikh kraevykh zadach”, Tr. MIAN, 102 (1967), 85–104 | Zbl

[9] Golovkin K. K., “Novye modelnye uravneniya dvizheniya vyazkoi zhidkosti i ikh odnoznachnaya razreshimost”, Tr. MIAN, 102 (1967), 29–50 | MR | Zbl