On the possible rate of decay at infinity of solutions of second order partial differential equations
Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 343-361 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For second-order partial differential equations the question of whether they can have solutions decaying superexponentially at infinity is studied. An example is constructed of an equation $\Delta u=q(x)u$ on the plane with bounded coefficients $q$ having a nonzero solution decaying superexponentially. This example provides a negative answer to a familiar question of E. M. Landis. These questions are also studied for hyperbolic and parabolic equations on manifolds. An example is constructed of a parabolic equation having a nonzero solution $u(x,t)$ decaying superexponentially as $t\to\infty$.
@article{SM_1992_72_2_a3,
     author = {V. Z. Meshkov},
     title = {On the possible rate of decay at infinity of solutions of second order partial differential equations},
     journal = {Sbornik. Mathematics},
     pages = {343--361},
     year = {1992},
     volume = {72},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_72_2_a3/}
}
TY  - JOUR
AU  - V. Z. Meshkov
TI  - On the possible rate of decay at infinity of solutions of second order partial differential equations
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 343
EP  - 361
VL  - 72
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1992_72_2_a3/
LA  - en
ID  - SM_1992_72_2_a3
ER  - 
%0 Journal Article
%A V. Z. Meshkov
%T On the possible rate of decay at infinity of solutions of second order partial differential equations
%J Sbornik. Mathematics
%D 1992
%P 343-361
%V 72
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1992_72_2_a3/
%G en
%F SM_1992_72_2_a3
V. Z. Meshkov. On the possible rate of decay at infinity of solutions of second order partial differential equations. Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 343-361. http://geodesic.mathdoc.fr/item/SM_1992_72_2_a3/

[1] Kondratev V. A., Landis E. M., “Kachestvennaya teoriya lineinykh differentsialnykh uravnenii v chastnykh proizvodnykh vtorogo poryadka”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 32, VINITI, M., 1988, 100–217 | MR

[2] Meshkov V. Z., “Vesovye differentsialnye neravenstva i ikh primenenie dlya otsenok skorosti ubyvaniya na beskonechnosti reshenii ellipticheskikh uravnenii vtorogo poryadka”, Tr. MIAN, 190 (1989), 139–158 | MR

[3] Stein E. M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[4] Agmon S., Duglis A., Nirenberg L., Otsenki reshenii ellipticheskikh uravnenii vblizi granitsy, IL, M., 1962

[5] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, t. 4, Mir, M., 1962

[6] Shubin M. A., Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, M., 1978 | MR

[7] Khermander L., Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965 | MR

[8] Aierlend K., Rouzen M., Klassicheskoe vvedenie v sovremennuyu teoriyu chisel, Mir, M., 1987 | MR

[9] Meshkov V. Z., “Teorema edinstvennosti dlya ellipticheskikh uravnenii vtorogo poryadka”, Matem. sb., 129(171) (1986), 386–396 | MR

[10] Kassels Dzh., Ratsionalnye kvadratichnye formy, Mir, M., 1982 | MR