Locally conformallity K\"ahlerian manifolds of constant holomorphic sectional curvature
Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 333-342

Voir la notice de l'article provenant de la source Math-Net.Ru

The author studies the structure of the curvature tensor of $L\mathscr C$-manifolds, i.e., almost Hermitian manifolds whose metric is, at least locally, conformally related to a Kählerian metric (with the same structure operator).
@article{SM_1992_72_2_a2,
     author = {V. F. Kirichenko},
     title = {Locally conformallity {K\"ahlerian} manifolds of constant holomorphic sectional curvature},
     journal = {Sbornik. Mathematics},
     pages = {333--342},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_72_2_a2/}
}
TY  - JOUR
AU  - V. F. Kirichenko
TI  - Locally conformallity K\"ahlerian manifolds of constant holomorphic sectional curvature
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 333
EP  - 342
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1992_72_2_a2/
LA  - en
ID  - SM_1992_72_2_a2
ER  - 
%0 Journal Article
%A V. F. Kirichenko
%T Locally conformallity K\"ahlerian manifolds of constant holomorphic sectional curvature
%J Sbornik. Mathematics
%D 1992
%P 333-342
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1992_72_2_a2/
%G en
%F SM_1992_72_2_a2
V. F. Kirichenko. Locally conformallity K\"ahlerian manifolds of constant holomorphic sectional curvature. Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 333-342. http://geodesic.mathdoc.fr/item/SM_1992_72_2_a2/