Order estimates of smallest norms, with respect to the choice of $N$ harmonics, of derivatives of the Dirichlet and Favard kernels
Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 567-578
Voir la notice de l'article provenant de la source Math-Net.Ru
The Dirichlet kernel is defined for periodic functions of several variables; it consists of $N$ harmonics and has minimal order of the norm with respect to the choice of harmonics of the mixed Weyl derivative in the space $\tilde L_q$. A similar problem on the minimal order of the norm is solved for the Favard kernel. Both problems generalize to the case of several derivatives.
@article{SM_1992_72_2_a16,
author = {\`E. M. Galeev},
title = {Order estimates of smallest norms, with respect to the choice of $N$ harmonics, of derivatives of the {Dirichlet} and {Favard} kernels},
journal = {Sbornik. Mathematics},
pages = {567--578},
publisher = {mathdoc},
volume = {72},
number = {2},
year = {1992},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1992_72_2_a16/}
}
TY - JOUR AU - È. M. Galeev TI - Order estimates of smallest norms, with respect to the choice of $N$ harmonics, of derivatives of the Dirichlet and Favard kernels JO - Sbornik. Mathematics PY - 1992 SP - 567 EP - 578 VL - 72 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1992_72_2_a16/ LA - en ID - SM_1992_72_2_a16 ER -
%0 Journal Article %A È. M. Galeev %T Order estimates of smallest norms, with respect to the choice of $N$ harmonics, of derivatives of the Dirichlet and Favard kernels %J Sbornik. Mathematics %D 1992 %P 567-578 %V 72 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1992_72_2_a16/ %G en %F SM_1992_72_2_a16
È. M. Galeev. Order estimates of smallest norms, with respect to the choice of $N$ harmonics, of derivatives of the Dirichlet and Favard kernels. Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 567-578. http://geodesic.mathdoc.fr/item/SM_1992_72_2_a16/