Order estimates of smallest norms, with respect to the choice of $N$ harmonics, of derivatives of the Dirichlet and Favard kernels
Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 567-578

Voir la notice de l'article provenant de la source Math-Net.Ru

The Dirichlet kernel is defined for periodic functions of several variables; it consists of $N$ harmonics and has minimal order of the norm with respect to the choice of harmonics of the mixed Weyl derivative in the space $\tilde L_q$. A similar problem on the minimal order of the norm is solved for the Favard kernel. Both problems generalize to the case of several derivatives.
@article{SM_1992_72_2_a16,
     author = {\`E. M. Galeev},
     title = {Order estimates of smallest norms, with respect to the choice of $N$ harmonics, of derivatives of the {Dirichlet} and {Favard} kernels},
     journal = {Sbornik. Mathematics},
     pages = {567--578},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_72_2_a16/}
}
TY  - JOUR
AU  - È. M. Galeev
TI  - Order estimates of smallest norms, with respect to the choice of $N$ harmonics, of derivatives of the Dirichlet and Favard kernels
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 567
EP  - 578
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1992_72_2_a16/
LA  - en
ID  - SM_1992_72_2_a16
ER  - 
%0 Journal Article
%A È. M. Galeev
%T Order estimates of smallest norms, with respect to the choice of $N$ harmonics, of derivatives of the Dirichlet and Favard kernels
%J Sbornik. Mathematics
%D 1992
%P 567-578
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1992_72_2_a16/
%G en
%F SM_1992_72_2_a16
È. M. Galeev. Order estimates of smallest norms, with respect to the choice of $N$ harmonics, of derivatives of the Dirichlet and Favard kernels. Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 567-578. http://geodesic.mathdoc.fr/item/SM_1992_72_2_a16/