Periodic factor of hyperbolic groups
Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 519-541
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that for any noncyclic hyperbolic torsion-free group $G$ there exists an integer $n(G)$ such that the factor group $G/G^n$ is infinite for any odd $n\geqslant n(G)$. In addition, $\bigcap_{i=1}^\infty G^i=\{1\}$. (Here $G^i$ is the subgroup generated by the $i$th powers of all elements of the groups $G$.)
@article{SM_1992_72_2_a14,
author = {A. Yu. Ol'shanskii},
title = {Periodic factor of hyperbolic groups},
journal = {Sbornik. Mathematics},
pages = {519--541},
publisher = {mathdoc},
volume = {72},
number = {2},
year = {1992},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1992_72_2_a14/}
}
A. Yu. Ol'shanskii. Periodic factor of hyperbolic groups. Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 519-541. http://geodesic.mathdoc.fr/item/SM_1992_72_2_a14/