Periodic factor of hyperbolic groups
Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 519-541
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that for any noncyclic hyperbolic torsion-free group $G$ there exists an integer $n(G)$ such that the factor group $G/G^n$ is infinite for any odd $n\geqslant n(G)$. In addition, $\bigcap_{i=1}^\infty G^i=\{1\}$. (Here $G^i$ is the subgroup generated by the $i$th powers of all elements of the groups $G$.)
@article{SM_1992_72_2_a14,
author = {A. Yu. Ol'shanskii},
title = {Periodic factor of hyperbolic groups},
journal = {Sbornik. Mathematics},
pages = {519--541},
year = {1992},
volume = {72},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1992_72_2_a14/}
}
A. Yu. Ol'shanskii. Periodic factor of hyperbolic groups. Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 519-541. http://geodesic.mathdoc.fr/item/SM_1992_72_2_a14/
[1] Gromov M., “Infinite groups as geometric objects”, Proc. ICM Warsawa, 1 (1984), 385–391 | MR
[2] Gromov M., “Hyperbolic groups”, Essays in Group Theory, 8, Springer-Verlag, 1987, 75–263 | MR
[3] Novikov P. S., Adyan S. I., “O beskonechnykh periodicheskikh gruppakh”, Izv. AN SSSR. Ser. matem., 32:1 (1968), 212–244 ; 2, 251–524 ; 3, 709–731 | Zbl
[4] Olshanskii A. Yu., Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, M., 1989 | MR
[5] Olshanskii A. Yu., “Diagrammy gomomorfizmov grupp poverkhnostei”, SMZh, 30:6 (1989), 150–171 | MR
[6] Olshanskii A. Yu., “Beskonechnaya prostaya neterova gruppa bez krucheniya”, Izv. AN SSSR. Ser. matem., 43:6 (1979), 1328–1393 | MR