Periodic factor of hyperbolic groups
Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 519-541

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for any noncyclic hyperbolic torsion-free group $G$ there exists an integer $n(G)$ such that the factor group $G/G^n$ is infinite for any odd $n\geqslant n(G)$. In addition, $\bigcap_{i=1}^\infty G^i=\{1\}$. (Here $G^i$ is the subgroup generated by the $i$th powers of all elements of the groups $G$.)
@article{SM_1992_72_2_a14,
     author = {A. Yu. Ol'shanskii},
     title = {Periodic factor of hyperbolic groups},
     journal = {Sbornik. Mathematics},
     pages = {519--541},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_72_2_a14/}
}
TY  - JOUR
AU  - A. Yu. Ol'shanskii
TI  - Periodic factor of hyperbolic groups
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 519
EP  - 541
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1992_72_2_a14/
LA  - en
ID  - SM_1992_72_2_a14
ER  - 
%0 Journal Article
%A A. Yu. Ol'shanskii
%T Periodic factor of hyperbolic groups
%J Sbornik. Mathematics
%D 1992
%P 519-541
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1992_72_2_a14/
%G en
%F SM_1992_72_2_a14
A. Yu. Ol'shanskii. Periodic factor of hyperbolic groups. Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 519-541. http://geodesic.mathdoc.fr/item/SM_1992_72_2_a14/