Homology of free Abelianized extensions of groups
Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 503-518
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a group given by a free presentation $G=F/N$, and $N'$ the commutator subgroup of $N$. The quotient $F/N'$ is called a free abelianized extension of $G$. We study the homology of $F/N'$ with trivial coefficients. In particular, for torsion-free $G$ our main result yields a complete description of the odd torsion in the integral homology of $F/N'$ in terms of the mod $p$ homology of $G$.
@article{SM_1992_72_2_a13,
author = {L. G. Kovacs and Yu. V. Kuz'min and R. Stohr},
title = {Homology of free {Abelianized} extensions of groups},
journal = {Sbornik. Mathematics},
pages = {503--518},
publisher = {mathdoc},
volume = {72},
number = {2},
year = {1992},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1992_72_2_a13/}
}
L. G. Kovacs; Yu. V. Kuz'min; R. Stohr. Homology of free Abelianized extensions of groups. Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 503-518. http://geodesic.mathdoc.fr/item/SM_1992_72_2_a13/