Homology of free Abelianized extensions of groups
Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 503-518

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a group given by a free presentation $G=F/N$, and $N'$ the commutator subgroup of $N$. The quotient $F/N'$ is called a free abelianized extension of $G$. We study the homology of $F/N'$ with trivial coefficients. In particular, for torsion-free $G$ our main result yields a complete description of the odd torsion in the integral homology of $F/N'$ in terms of the mod $p$ homology of $G$.
@article{SM_1992_72_2_a13,
     author = {L. G. Kovacs and Yu. V. Kuz'min and R. Stohr},
     title = {Homology of free {Abelianized} extensions of groups},
     journal = {Sbornik. Mathematics},
     pages = {503--518},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_72_2_a13/}
}
TY  - JOUR
AU  - L. G. Kovacs
AU  - Yu. V. Kuz'min
AU  - R. Stohr
TI  - Homology of free Abelianized extensions of groups
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 503
EP  - 518
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1992_72_2_a13/
LA  - en
ID  - SM_1992_72_2_a13
ER  - 
%0 Journal Article
%A L. G. Kovacs
%A Yu. V. Kuz'min
%A R. Stohr
%T Homology of free Abelianized extensions of groups
%J Sbornik. Mathematics
%D 1992
%P 503-518
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1992_72_2_a13/
%G en
%F SM_1992_72_2_a13
L. G. Kovacs; Yu. V. Kuz'min; R. Stohr. Homology of free Abelianized extensions of groups. Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 503-518. http://geodesic.mathdoc.fr/item/SM_1992_72_2_a13/