On the asymptotics of solutions of differential equations in Hilbert space
Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 485-501
Voir la notice de l'article provenant de la source Math-Net.Ru
Solutions of differential equations of first and arbitrary order in Hilbert space are investigated; they arise in the study of elliptic problems in cylindrical domains and in domains with singular points. Existence theorems are obtained for a broad class of right sides, and the asymptotics of a solution as $t\to\infty$ is constructed under “minimal” conditions on the coefficients. The results make considerable progress possible in the study of qualitative properties of solutions of elliptic equations of higher order.
@article{SM_1992_72_2_a12,
author = {L. A. Bagirov and V. A. Kondrat'ev},
title = {On the asymptotics of solutions of differential equations in {Hilbert} space},
journal = {Sbornik. Mathematics},
pages = {485--501},
publisher = {mathdoc},
volume = {72},
number = {2},
year = {1992},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1992_72_2_a12/}
}
TY - JOUR AU - L. A. Bagirov AU - V. A. Kondrat'ev TI - On the asymptotics of solutions of differential equations in Hilbert space JO - Sbornik. Mathematics PY - 1992 SP - 485 EP - 501 VL - 72 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1992_72_2_a12/ LA - en ID - SM_1992_72_2_a12 ER -
L. A. Bagirov; V. A. Kondrat'ev. On the asymptotics of solutions of differential equations in Hilbert space. Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 485-501. http://geodesic.mathdoc.fr/item/SM_1992_72_2_a12/