On the possibility of holomorphic extension into a~domain of function defined on a~connected piece of its boundary
Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 467-483
Voir la notice de l'article provenant de la source Math-Net.Ru
This article presents a solution of the problem of one-sided holomorphic extension of a function $f$ defined on a smooth hypersurface $\Gamma\ni 0$ dividing the unit ball $B$
in $\mathbf C^n$ into two domains. In addition, it discusses the possibility of replacing the ball by another domain.
@article{SM_1992_72_2_a11,
author = {L. A. Aizenberg and A. M. Kytmanov},
title = {On the possibility of holomorphic extension into a~domain of function defined on a~connected piece of its boundary},
journal = {Sbornik. Mathematics},
pages = {467--483},
publisher = {mathdoc},
volume = {72},
number = {2},
year = {1992},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1992_72_2_a11/}
}
TY - JOUR AU - L. A. Aizenberg AU - A. M. Kytmanov TI - On the possibility of holomorphic extension into a~domain of function defined on a~connected piece of its boundary JO - Sbornik. Mathematics PY - 1992 SP - 467 EP - 483 VL - 72 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1992_72_2_a11/ LA - en ID - SM_1992_72_2_a11 ER -
%0 Journal Article %A L. A. Aizenberg %A A. M. Kytmanov %T On the possibility of holomorphic extension into a~domain of function defined on a~connected piece of its boundary %J Sbornik. Mathematics %D 1992 %P 467-483 %V 72 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1992_72_2_a11/ %G en %F SM_1992_72_2_a11
L. A. Aizenberg; A. M. Kytmanov. On the possibility of holomorphic extension into a~domain of function defined on a~connected piece of its boundary. Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 467-483. http://geodesic.mathdoc.fr/item/SM_1992_72_2_a11/