On the possibility of holomorphic extension into a domain of function defined on a connected piece of its boundary
Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 467-483 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article presents a solution of the problem of one-sided holomorphic extension of a function $f$ defined on a smooth hypersurface $\Gamma\ni 0$ dividing the unit ball $B$ in $\mathbf C^n$ into two domains. In addition, it discusses the possibility of replacing the ball by another domain.
@article{SM_1992_72_2_a11,
     author = {L. A. Aizenberg and A. M. Kytmanov},
     title = {On the possibility of holomorphic extension into a~domain of function defined on a~connected piece of its boundary},
     journal = {Sbornik. Mathematics},
     pages = {467--483},
     year = {1992},
     volume = {72},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_72_2_a11/}
}
TY  - JOUR
AU  - L. A. Aizenberg
AU  - A. M. Kytmanov
TI  - On the possibility of holomorphic extension into a domain of function defined on a connected piece of its boundary
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 467
EP  - 483
VL  - 72
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1992_72_2_a11/
LA  - en
ID  - SM_1992_72_2_a11
ER  - 
%0 Journal Article
%A L. A. Aizenberg
%A A. M. Kytmanov
%T On the possibility of holomorphic extension into a domain of function defined on a connected piece of its boundary
%J Sbornik. Mathematics
%D 1992
%P 467-483
%V 72
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1992_72_2_a11/
%G en
%F SM_1992_72_2_a11
L. A. Aizenberg; A. M. Kytmanov. On the possibility of holomorphic extension into a domain of function defined on a connected piece of its boundary. Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 467-483. http://geodesic.mathdoc.fr/item/SM_1992_72_2_a11/

[1] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, M., 1950

[2] Khenkin G. M., Chirka E. M., “Granichnye svoistva golomorfnykh funktsii neskolkikh kompleksnykh peremennykh”, Sovremennye problemy matematiki, Itogi nauki i tekhn., 4, VINITI, M., 1975, 13–142

[3] Zin G., “3. Esistenza e rappresentazione di funzioni analitiche, le quali, su una curva di Jordan, si riducono a una funzione assegnata”, Ann. Mat. pura ed appl., 34 (1953), 365–405 | DOI | MR | Zbl

[4] Fok V. A., Kuni F. M., “O vvedenii «gasyaschei» funktsii v dispersionnye sootnosheniya”, DAN SSSR, 127:6 (1959), 1195–1198 | Zbl

[5] Patil D. I., “Representation of $H^p$-functions”, Bull. Amer. Math. Soc., 78:4 (1972), 617–620 | DOI | MR | Zbl

[6] Krein M. G., Nudelman P. Ya., “O nekotorykh novykh zadachakh dlya funktsii klassa Khardi i kontinualnykh semeistvakh s dvoinoi ortogonalnostyu”, DAN SSSR, 209:3 (1973), 537–540 | MR | Zbl

[7] Steiner A., “Abschuitte von Randfunktionen beschrankter analytischer Funktionen”, Lect. Notes Math., 419 (1974), 342–351 | DOI | MR | Zbl

[8] Tarkhanov N. N., “Kriterii razreshimosti nekorrektnoi zadachi Koshi dlya ellipticheskikh sistem”, DAN SSSR, 308:3 (1989), 531–534 | MR

[9] Aizenberg L. A., “O vozmozhnosti analiticheskogo prodolzheniya v oblast funktsii, zadannykh na duge granitsy etoi oblasti. Obobschennaya teorema Foka - Kuni”, Kompleksnyi analiz i matematicheskaya fizika, Sb. nauch. tr. IF SO AN SSSR, Krasnoyarsk, 1988, 5–11 | MR | Zbl

[10] Shaimkulov B. A., “O kriterii razreshimosti nekorrektnoi zadachi Koshi dlya golomorfnykh funktsii”, Vsesoyuznaya konf. po geometricheskoi teorii funktsii, Tez. dokl., Novosibirsk, 1988, 109 | MR | Zbl

[11] Znamenskaya L. N., “Kriterii golomorfnoi prodolzhimosti funktsii klassa $L^p$, zadannykh na chasti granitsy Shilova krugovoi silno zvezdnoi oblasti”, Sib. matem. zhurn., 31:3 (1990)

[12] Aizenberg L. A., Formuly Karlemana v kompleksnom analize, Nauka, Novosibirsk, 1990 | MR | Zbl

[13] Nevanlinna R., Odnoznachnye analiticheskie funktsii, Gostekhizdat, M., 1941

[14] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Fizmatgiz, M., 1962

[15] Roitberg Ya. A., “O znacheniyakh na granitse oblasti obobschennykh ellipticheskikh uravnenii”, Matem. sb., 86. (128) (1971), 248–267 | MR | Zbl

[16] Straube E. J., “Harmonic and analytic functions admitting a distribution boundary value”, Ann. Sci. norm. supper. Pisa cl. sci., 11:4 (1984), 559–591 | MR | Zbl

[17] Uells R., Differentsialnoe ischislenie na kompleksnykh mnogoobraziyakh, Mir, M., 1976 | MR

[18] Chirka E. M., “Analiticheskoe predstavlenie $CR$-funktsii”, Matem. sb., 98 (140) (1975), 591–623 | Zbl

[19] Kytmanov A. M., “Golomorfnoe prodolzhenie CR-funktsii s osobennostyami na giperpoverkhnosti”, Izv. AN SSSR. Ser. mat., 54:6 (1990), 1320–1330 | MR | Zbl

[20] Dautov Sh. A., Kytmanov A. M., “O granichnykh znacheniyakh integrala tipa Martinelli - Bokhnera”, Nekotorye svoistva golomorfnykh funktsii mnogikh kompleksnykh peremennykh, Sb. nauch. tr. IF SO AN SSSR, Krasnoyarsk, 1973, 49–54 | MR

[21] Folland G. B., Kohn J. J., The Neumann problem for the Cauchy - Riemann complex, Ann. Math. Stud., 75, Princeton. Univ. Press., 1972 | MR | Zbl

[22] Aronov A. M., Kytmanov A. M., “O golomorfnosti funktsii, predstavimykh integralom Martinelli - Bokhnera”, Funktsion. analiz i ego pril., 9:3 (1975), 83–84 | MR | Zbl

[23] Kytmanov A. M., Aizenberg L. A., “O golomorfnosti nepreryvnykh funktsii, predstavimykh integralom Martinelli - Bokhnera”, Izv. AN Arm. SSR. Ser. matem., 13:2 (1978), 158–169 | MR | Zbl

[24] Kytmanov A. M., “Razreshimost $\overline\partial$-zadachi Neimana dlya funktsii”, Kompleksnyi analiz i matematicheskaya fizika, Krasnoyarsk, 1988, 74–79 | MR | Zbl

[25] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974 | MR

[26] Gonchar A. A., “On analytic continuation from the “edge of wedge””, Ann. Acad. Sci. Finnical. Ser. Al: Mathem., 10 (1985), 221–225 | MR | Zbl

[27] Krasichkov I. F., “Sistemy funktsii so svoistvom dvoinoi ortogonalnosti”, Matem. zametki, 4:5 (1968), 551–556 | Zbl