On the possibility of holomorphic extension into a~domain of function defined on a~connected piece of its boundary
Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 467-483

Voir la notice de l'article provenant de la source Math-Net.Ru

This article presents a solution of the problem of one-sided holomorphic extension of a function $f$ defined on a smooth hypersurface $\Gamma\ni 0$ dividing the unit ball $B$ in $\mathbf C^n$ into two domains. In addition, it discusses the possibility of replacing the ball by another domain.
@article{SM_1992_72_2_a11,
     author = {L. A. Aizenberg and A. M. Kytmanov},
     title = {On the possibility of holomorphic extension into a~domain of function defined on a~connected piece of its boundary},
     journal = {Sbornik. Mathematics},
     pages = {467--483},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_72_2_a11/}
}
TY  - JOUR
AU  - L. A. Aizenberg
AU  - A. M. Kytmanov
TI  - On the possibility of holomorphic extension into a~domain of function defined on a~connected piece of its boundary
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 467
EP  - 483
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1992_72_2_a11/
LA  - en
ID  - SM_1992_72_2_a11
ER  - 
%0 Journal Article
%A L. A. Aizenberg
%A A. M. Kytmanov
%T On the possibility of holomorphic extension into a~domain of function defined on a~connected piece of its boundary
%J Sbornik. Mathematics
%D 1992
%P 467-483
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1992_72_2_a11/
%G en
%F SM_1992_72_2_a11
L. A. Aizenberg; A. M. Kytmanov. On the possibility of holomorphic extension into a~domain of function defined on a~connected piece of its boundary. Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 467-483. http://geodesic.mathdoc.fr/item/SM_1992_72_2_a11/