On the possible rate of growth of polynomials orthogonal with a~continuous positive weight
Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 311-331

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that there are continuous positive weights such that the orthogonal polynomials constructed with respect to them are not uniformly bounded at a given point, both for the circle and for a closed interval. Furthermore, in the case of the circle the orthogonal polynomials have logarithmic growth. Also determined is a minimal (in a certain sense) class of positive continuous functions in which there exists a weight function having the property indicated.
@article{SM_1992_72_2_a1,
     author = {M. U. Ambroladze},
     title = {On the possible rate of growth of polynomials orthogonal with a~continuous positive weight},
     journal = {Sbornik. Mathematics},
     pages = {311--331},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_72_2_a1/}
}
TY  - JOUR
AU  - M. U. Ambroladze
TI  - On the possible rate of growth of polynomials orthogonal with a~continuous positive weight
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 311
EP  - 331
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1992_72_2_a1/
LA  - en
ID  - SM_1992_72_2_a1
ER  - 
%0 Journal Article
%A M. U. Ambroladze
%T On the possible rate of growth of polynomials orthogonal with a~continuous positive weight
%J Sbornik. Mathematics
%D 1992
%P 311-331
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1992_72_2_a1/
%G en
%F SM_1992_72_2_a1
M. U. Ambroladze. On the possible rate of growth of polynomials orthogonal with a~continuous positive weight. Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 311-331. http://geodesic.mathdoc.fr/item/SM_1992_72_2_a1/