On the possible rate of growth of polynomials orthogonal with a continuous positive weight
Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 311-331 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that there are continuous positive weights such that the orthogonal polynomials constructed with respect to them are not uniformly bounded at a given point, both for the circle and for a closed interval. Furthermore, in the case of the circle the orthogonal polynomials have logarithmic growth. Also determined is a minimal (in a certain sense) class of positive continuous functions in which there exists a weight function having the property indicated.
@article{SM_1992_72_2_a1,
     author = {M. U. Ambroladze},
     title = {On the possible rate of growth of polynomials orthogonal with a~continuous positive weight},
     journal = {Sbornik. Mathematics},
     pages = {311--331},
     year = {1992},
     volume = {72},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_72_2_a1/}
}
TY  - JOUR
AU  - M. U. Ambroladze
TI  - On the possible rate of growth of polynomials orthogonal with a continuous positive weight
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 311
EP  - 331
VL  - 72
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1992_72_2_a1/
LA  - en
ID  - SM_1992_72_2_a1
ER  - 
%0 Journal Article
%A M. U. Ambroladze
%T On the possible rate of growth of polynomials orthogonal with a continuous positive weight
%J Sbornik. Mathematics
%D 1992
%P 311-331
%V 72
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1992_72_2_a1/
%G en
%F SM_1992_72_2_a1
M. U. Ambroladze. On the possible rate of growth of polynomials orthogonal with a continuous positive weight. Sbornik. Mathematics, Tome 72 (1992) no. 2, pp. 311-331. http://geodesic.mathdoc.fr/item/SM_1992_72_2_a1/

[1] Steklov V. A., “Une methode de la solution du probleme de development des fonctions en series de polynomes de Tchebysheff independante de la theorie de fermeture”, Izv. Ros. AN, 1921, 281–326

[2] Rakhmanov E. A., “O gipoteze V. A. Steklova v teorii ortogonalnykh mnogochlenov”, Matem. sb., 108(150) (1979), 581–608 | MR | Zbl

[3] Rakhmanov E. A., “Ob otsenkakh rosta ortogonalnykh mnogochlenov, ves kotorykh otgranichen ot nulya”, Matem. sb., 114(156) (1981), 269–298 | MR

[4] Geronimus Ya. L., Mnogochleny, ortogonalnye na okruzhnosti i otrezke, Fizmatgiz, M., 1958 | Zbl

[5] Segë G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962

[6] Badkov V. M., “Approksimativnye svoistva ryadov Fure po ortogonalnym polinomam”, UMN, 33:4(202) (1978), 51–106 | MR | Zbl

[7] Zigmund A., Trigonometricheskie ryady, t. 2, Mir, M., 1965 | MR

[8] Bari N. K., Trigonometricheskie ryady, Mir, M., 1961 | MR

[9] Ambroladze M. U., “O vozmozhnom roste mnogochlenov ortogonalnykh s nepreryvnym polozhitelnym vesom”, Matem. zametki, 45:6 (1989), 99–101 | MR | Zbl