On the Fourier–Haar series of composite functions
Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 163-188 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author determines the class of all homeomorphic changes of variable that preserve absolute convergence of the series of Fourier–Haar coefficients. It is established that among all the continuously differentiable homeomorphic changes of variable only the functions $\varphi_1$ and $\varphi_2$ defined by the equalities $\varphi_1(x)=x$ and $\varphi_2(x)=1-x$ for $x\in [0,1]$ preserve both convergence and absolute convergence of the Fourier–Haar series. The class of Borel measurable functions whose Fourier–Haar series converge everywhere under any homeomorphic change of variable is determined, along with the class of all Borel measurable functions whose Fourier–Haar series converge absolutely at every point under any homeomorphic change of variable.
@article{SM_1992_72_1_a9,
     author = {V. M. Bugadze},
     title = {On the {Fourier{\textendash}Haar} series of composite functions},
     journal = {Sbornik. Mathematics},
     pages = {163--188},
     year = {1992},
     volume = {72},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_72_1_a9/}
}
TY  - JOUR
AU  - V. M. Bugadze
TI  - On the Fourier–Haar series of composite functions
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 163
EP  - 188
VL  - 72
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1992_72_1_a9/
LA  - en
ID  - SM_1992_72_1_a9
ER  - 
%0 Journal Article
%A V. M. Bugadze
%T On the Fourier–Haar series of composite functions
%J Sbornik. Mathematics
%D 1992
%P 163-188
%V 72
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1992_72_1_a9/
%G en
%F SM_1992_72_1_a9
V. M. Bugadze. On the Fourier–Haar series of composite functions. Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 163-188. http://geodesic.mathdoc.fr/item/SM_1992_72_1_a9/

[1] Aleksandrov P. S., Vvedenie v teoriyu mnozhestv i obschuyu topologiyu, Nauka, M., 1977 | MR

[2] Aleksich G., Problemy skhodimosti ortogonalnykh ryadov, IL, M., 1963 | MR

[3] Bugadze V. M., Ryady Fure - Khaara superpozitsii funktsii, Izd-vo Tbil. un-ta, Tbilisi, 1988 | MR | Zbl

[4] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, Nauka, M., 1984 | MR | Zbl

[5] Kuratovskii K., Topologiya, t. 1, Mir, M., 1966 | MR

[6] Luzin N. N., Teoriya funktsii deistvitelnogo peremennogo, Uchpedgiz, M., 1948

[7] Luzin N. N., Lektsii ob analiticheskikh mnozhestvakh i ikh prilozheniyakh, GITTL, M., 1953

[8] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR

[9] Olevskii A. M., “Modifikatsii funktsii i ryady Fure”, UMN, 40:3 (1985), 157–193 | MR | Zbl

[10] Ulyanov P. L., “O ryadakh po sisteme Khaara”, Matem. sb., 63 (105) (1964), 356–391

[11] Ulyanov P. L., “Ob absolyutnoi i ravnomernoi skhodimosti ryadov Fure”, Matem. sb., 72 (114) (1967), 193–225

[12] Ulyanov P. L., “Absolyutnaya skhodimost ryadov Fure - Khaara ot superpozitsii funktsii”, Anal. Math., 4:3 (1978), 225–236 | DOI | MR

[13] Ulyanov P. L., “Superpozitsii funktsii i koeffitsienty Fure”, Tr. MIAN, 172 (1985), 338–348 | MR

[14] Ulyanov P. L., “Ob odnoi algebre funktsii”, Acta Sci. Math., 49 (1985), 169–178 | MR