Non-Archimedean Rankin convolutions of unbounded growth
Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 151-161

Voir la notice de l'article provenant de la source Math-Net.Ru

Non-Archimedean Rankin convolutions are constructed in the supersingular case. The construction is based on a refined technique of $h$-admissible measures, for which the non-Archimedean Mellin transform gives analytic functions of unbounded growth.
@article{SM_1992_72_1_a8,
     author = {My Vinh Quang},
     title = {Non-Archimedean {Rankin} convolutions of unbounded growth},
     journal = {Sbornik. Mathematics},
     pages = {151--161},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_72_1_a8/}
}
TY  - JOUR
AU  - My Vinh Quang
TI  - Non-Archimedean Rankin convolutions of unbounded growth
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 151
EP  - 161
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1992_72_1_a8/
LA  - en
ID  - SM_1992_72_1_a8
ER  - 
%0 Journal Article
%A My Vinh Quang
%T Non-Archimedean Rankin convolutions of unbounded growth
%J Sbornik. Mathematics
%D 1992
%P 151-161
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1992_72_1_a8/
%G en
%F SM_1992_72_1_a8
My Vinh Quang. Non-Archimedean Rankin convolutions of unbounded growth. Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 151-161. http://geodesic.mathdoc.fr/item/SM_1992_72_1_a8/