Non-Archimedean Rankin convolutions of unbounded growth
Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 151-161
Cet article a éte moissonné depuis la source Math-Net.Ru
Non-Archimedean Rankin convolutions are constructed in the supersingular case. The construction is based on a refined technique of $h$-admissible measures, for which the non-Archimedean Mellin transform gives analytic functions of unbounded growth.
@article{SM_1992_72_1_a8,
author = {My Vinh Quang},
title = {Non-Archimedean {Rankin} convolutions of unbounded growth},
journal = {Sbornik. Mathematics},
pages = {151--161},
year = {1992},
volume = {72},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1992_72_1_a8/}
}
My Vinh Quang. Non-Archimedean Rankin convolutions of unbounded growth. Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 151-161. http://geodesic.mathdoc.fr/item/SM_1992_72_1_a8/
[1] Vishik M. M., “Nearkhimedovy mery, svyazannye s ryadami Dirikhle”, Matem. sb., 99 (141) (1976), 248–260 | Zbl
[2] Manin Yu. I., “Periody parabolicheskikh form i $p$-adicheskie ryady Gekke”, Matem. sb., 92 (134) (1973), 376–401 | MR
[3] Panchishkin A. A., Nearkhimedovy avtomorfnye dzeta-funktsii, Izd-vo MGU, M., 1988 | Zbl
[4] Panchishkin A. A., “Nearkhimedovy $L$-funktsii Rankina i ikh funktsionalnye uravneniya”, Izv. AN SSSR. Ser. matem., 52:2 (1988), 336–354 | MR | Zbl
[5] Amice Y., Velu J., Distributions $p$-adique associees aux series de Hecke, Journees arithmetiques, Bordeaux, 1974 | MR
[6] Rankin R. A., The scalar product of modular forms, Proc. London Math. Soc. (3), 2, 1952 | MR | Zbl