Smoothness properties of solutions of nonlinear differential equations
Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 135-150

Voir la notice de l'article provenant de la source Math-Net.Ru

Smoothness of solutions of ordinary differential equations of first and higher orders are considered in spaces of infinitely differentiable Roumieu functions. Various conditions on the right sides of the equations are studied for which smooth solutions of the equations lie in some Roumieu space.
@article{SM_1992_72_1_a7,
     author = {P. P. Zabreiko and V. I. Nazarov},
     title = {Smoothness properties of solutions of nonlinear differential equations},
     journal = {Sbornik. Mathematics},
     pages = {135--150},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_72_1_a7/}
}
TY  - JOUR
AU  - P. P. Zabreiko
AU  - V. I. Nazarov
TI  - Smoothness properties of solutions of nonlinear differential equations
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 135
EP  - 150
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1992_72_1_a7/
LA  - en
ID  - SM_1992_72_1_a7
ER  - 
%0 Journal Article
%A P. P. Zabreiko
%A V. I. Nazarov
%T Smoothness properties of solutions of nonlinear differential equations
%J Sbornik. Mathematics
%D 1992
%P 135-150
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1992_72_1_a7/
%G en
%F SM_1992_72_1_a7
P. P. Zabreiko; V. I. Nazarov. Smoothness properties of solutions of nonlinear differential equations. Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 135-150. http://geodesic.mathdoc.fr/item/SM_1992_72_1_a7/