Smoothness properties of solutions of nonlinear differential equations
Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 135-150 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Smoothness of solutions of ordinary differential equations of first and higher orders are considered in spaces of infinitely differentiable Roumieu functions. Various conditions on the right sides of the equations are studied for which smooth solutions of the equations lie in some Roumieu space.
@article{SM_1992_72_1_a7,
     author = {P. P. Zabreiko and V. I. Nazarov},
     title = {Smoothness properties of solutions of nonlinear differential equations},
     journal = {Sbornik. Mathematics},
     pages = {135--150},
     year = {1992},
     volume = {72},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_72_1_a7/}
}
TY  - JOUR
AU  - P. P. Zabreiko
AU  - V. I. Nazarov
TI  - Smoothness properties of solutions of nonlinear differential equations
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 135
EP  - 150
VL  - 72
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1992_72_1_a7/
LA  - en
ID  - SM_1992_72_1_a7
ER  - 
%0 Journal Article
%A P. P. Zabreiko
%A V. I. Nazarov
%T Smoothness properties of solutions of nonlinear differential equations
%J Sbornik. Mathematics
%D 1992
%P 135-150
%V 72
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1992_72_1_a7/
%G en
%F SM_1992_72_1_a7
P. P. Zabreiko; V. I. Nazarov. Smoothness properties of solutions of nonlinear differential equations. Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 135-150. http://geodesic.mathdoc.fr/item/SM_1992_72_1_a7/

[1] Koddington E., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1956

[2] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Izd-vo MGU, M., 1984

[3] Gevrey M., “Sur la nature analytique des solutions des equations aux dérivees partielles”, Ann. Ec. Norm. Sup. Paris, 35 (1918), 129–190 | MR | Zbl

[4] Roumieu C., “Sur quelques extensions de la notion de distribution”, Ann. Ec. Norm. Sup. Paris, 77 (1960), 41–121 | MR | Zbl

[5] Lions J.-L., Magenes E., Problémes aux limites non homogenes et applications, v. 3, Dunod, Paris, 1970 | MR | Zbl

[6] Gorbachuk V. I., Gorbachuk M. L., Granichnye zadachi dlya differentsialno-operatornykh uravnenii, Naukova dumka, Kiev, 1984 | MR | Zbl

[7] Radyno Ya. V., Tadzhuri M., “Operatornye uravneniya v prostranstvakh vektorov Berlinga”, Differents. uravneniya, 20:12 (1984), 2053–2061 | MR | Zbl

[8] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[9] Dubinskii Yu. A., “O netrivialnosti nekotorykh klassov funktsii i razreshimosti nelineinykh obyknovennykh differentsialnykh uravnenii beskonechnogo poryadka”, Differents. uravneniya, 10:2 (1974), 231–240 | MR | Zbl

[10] Dubinskii Yu. A., “Prostranstva Soboleva beskonechnogo poryadka i povedenie reshenii nekotorykh kraevykh zadach pri ogranichennom vozrastanii poryadka uravneniya”, Matem. sb., 98 (140) (1975), 162–184 | MR

[11] Chan Dyk Van, Nelineinye differentsialnye uravneniya i funktsionalnye prostranstva beskonechnogo poryadka, Izd-vo BGU, Minsk, 1983 | Zbl

[12] Nazarov V. I., “Nelineinoe differentsialnoe uravnenie pervogo poryadka v prostranstvakh Rume”, DAN BSSR, 28:9 (1984), 780–783 | MR | Zbl

[13] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P., Rutitskii Ya. B., Stetsenko V. Ya., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR

[14] Riordan Dzh., Vvedenie v kombinatornyi analiz, IL, M., 1963

[15] Riordan Dzh., Kombinatornye tozhdestva, Nauka, M., 1982 | MR | Zbl