On the degree of approximation of the Sobolev class~$W_q^r$ by bilinear forms in~$L_p$ for $1\leqslant q\leqslant p\leqslant 2$
Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 113-120
Voir la notice de l'article provenant de la source Math-Net.Ru
The degree of best approximation by bilinear forms in $L_p$, where
$1\leqslant q\leqslant p\leqslant 2$, is established for the class $W_q^r$.
@article{SM_1992_72_1_a5,
author = {M. Babayev},
title = {On the degree of approximation of the {Sobolev} class~$W_q^r$ by bilinear forms in~$L_p$ for $1\leqslant q\leqslant p\leqslant 2$},
journal = {Sbornik. Mathematics},
pages = {113--120},
publisher = {mathdoc},
volume = {72},
number = {1},
year = {1992},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1992_72_1_a5/}
}
TY - JOUR AU - M. Babayev TI - On the degree of approximation of the Sobolev class~$W_q^r$ by bilinear forms in~$L_p$ for $1\leqslant q\leqslant p\leqslant 2$ JO - Sbornik. Mathematics PY - 1992 SP - 113 EP - 120 VL - 72 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1992_72_1_a5/ LA - en ID - SM_1992_72_1_a5 ER -
%0 Journal Article %A M. Babayev %T On the degree of approximation of the Sobolev class~$W_q^r$ by bilinear forms in~$L_p$ for $1\leqslant q\leqslant p\leqslant 2$ %J Sbornik. Mathematics %D 1992 %P 113-120 %V 72 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1992_72_1_a5/ %G en %F SM_1992_72_1_a5
M. Babayev. On the degree of approximation of the Sobolev class~$W_q^r$ by bilinear forms in~$L_p$ for $1\leqslant q\leqslant p\leqslant 2$. Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 113-120. http://geodesic.mathdoc.fr/item/SM_1992_72_1_a5/