On the degree of approximation of the Sobolev class~$W_q^r$ by bilinear forms in~$L_p$ for $1\leqslant q\leqslant p\leqslant 2$
Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 113-120

Voir la notice de l'article provenant de la source Math-Net.Ru

The degree of best approximation by bilinear forms in $L_p$, where $1\leqslant q\leqslant p\leqslant 2$, is established for the class $W_q^r$.
@article{SM_1992_72_1_a5,
     author = {M. Babayev},
     title = {On the degree of approximation of the {Sobolev} class~$W_q^r$ by bilinear forms in~$L_p$ for $1\leqslant q\leqslant p\leqslant 2$},
     journal = {Sbornik. Mathematics},
     pages = {113--120},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_72_1_a5/}
}
TY  - JOUR
AU  - M. Babayev
TI  - On the degree of approximation of the Sobolev class~$W_q^r$ by bilinear forms in~$L_p$ for $1\leqslant q\leqslant p\leqslant 2$
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 113
EP  - 120
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1992_72_1_a5/
LA  - en
ID  - SM_1992_72_1_a5
ER  - 
%0 Journal Article
%A M. Babayev
%T On the degree of approximation of the Sobolev class~$W_q^r$ by bilinear forms in~$L_p$ for $1\leqslant q\leqslant p\leqslant 2$
%J Sbornik. Mathematics
%D 1992
%P 113-120
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1992_72_1_a5/
%G en
%F SM_1992_72_1_a5
M. Babayev. On the degree of approximation of the Sobolev class~$W_q^r$ by bilinear forms in~$L_p$ for $1\leqslant q\leqslant p\leqslant 2$. Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 113-120. http://geodesic.mathdoc.fr/item/SM_1992_72_1_a5/