On the degree of approximation of the Sobolev class $W_q^r$ by bilinear forms in $L_p$ for $1\leqslant q\leqslant p\leqslant 2$
Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 113-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The degree of best approximation by bilinear forms in $L_p$, where $1\leqslant q\leqslant p\leqslant 2$, is established for the class $W_q^r$.
@article{SM_1992_72_1_a5,
     author = {M. Babayev},
     title = {On the degree of approximation of the {Sobolev} class~$W_q^r$ by bilinear forms in~$L_p$ for $1\leqslant q\leqslant p\leqslant 2$},
     journal = {Sbornik. Mathematics},
     pages = {113--120},
     year = {1992},
     volume = {72},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_72_1_a5/}
}
TY  - JOUR
AU  - M. Babayev
TI  - On the degree of approximation of the Sobolev class $W_q^r$ by bilinear forms in $L_p$ for $1\leqslant q\leqslant p\leqslant 2$
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 113
EP  - 120
VL  - 72
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1992_72_1_a5/
LA  - en
ID  - SM_1992_72_1_a5
ER  - 
%0 Journal Article
%A M. Babayev
%T On the degree of approximation of the Sobolev class $W_q^r$ by bilinear forms in $L_p$ for $1\leqslant q\leqslant p\leqslant 2$
%J Sbornik. Mathematics
%D 1992
%P 113-120
%V 72
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1992_72_1_a5/
%G en
%F SM_1992_72_1_a5
M. Babayev. On the degree of approximation of the Sobolev class $W_q^r$ by bilinear forms in $L_p$ for $1\leqslant q\leqslant p\leqslant 2$. Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 113-120. http://geodesic.mathdoc.fr/item/SM_1992_72_1_a5/

[1] Schmidt E., “Zur theorie der linearen and nictlinearen Integralgleichungen, I”, J. Math. Ann., 63 (1907), 433–476 | DOI | MR | Zbl

[2] Temlyakov V. N., “O nailuchshikh bilineinykh priblizheniyakh periodicheskikh funktsii mnogikh peremennykh”, DAN SSSR, 286:2 (1986), 301–304 | MR | Zbl

[3] Temlyakov V. N., “Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi”, Tr. MIAN, 178, 1986, 3–113 | MR | Zbl

[4] Babaev M.-B. A., “Priblizhenie Sobolevskikh klassov funktsii summami proizvedenii funktsii menshego chisla peremennykh”, Tr. MIAN, 180 (1987), 30–32

[5] Babaev M.-B. A., “Priblizhenie Sobolevskikh klassov funktsii summami proizvedenii funktsii menshego chisla peremennykh i kvazipoperechniki”, Dokl. AN AzerbSSR, 1986, no. 3, 3–5 | Zbl

[6] Shura-Bura M. R., “Approksimatsiya funktsii mnogikh peremennykh funktsiyami, kazhdaya iz kotorykh zavisit ot odnogo peremennogo”, Vychisl. matem., 2 (1957), 3–19 | Zbl

[7] Micchelli C. A., Pinkus A., “Some Problems in the approximations of two variables and $n$-widths of integral operators”, J. Approx. Theory, 24 (1978), 51–77 | DOI | MR | Zbl

[8] Miroshin N. V., Khromov V. V., “Ob odnoi zadache nailuchshei approksimatsii funktsii mnogikh peremennykh”, Matem. zametki, 32 (1982), 721–727 | MR | Zbl

[9] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, MGU, M., 1976 | MR

[10] Maiorov V. E., “Diskretizatsiya zadachi o poperechnikakh”, UMN, 30:6 (186) (1975), 179–180 | MR | Zbl

[11] Temlyakov V. N., “Priblizhenie periodicheskikh funktsii mnogikh peremennykh kombinatsiyami funktsii, zavisyaschikh ot menshego chisla peremennykh”, Tr. MIAN, 173 (1986), 243–252 | MR

[12] Birman M. Sh., Solomyak M. Z., “Kusochno-polinomialnye priblizheniya funktsii klassov $W_p^0$”, Matem. sb., 73(115) (1967), 331–335 | MR

[13] Nikolskii S. M., “O teoremakh vlozheniya, prodolzheniya i priblizheniya”, UMN, 16:5(101) (1961), 63–114 | MR

[14] Temlyakov V. N., “Bilineinaya approksimatsiya i prilozheniya”, Tr. MIAN, 187, 1989, 191–215 | MR | Zbl