On the rationality problem for conic bundles
Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 105-111 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a standard conic bundle over a rational surface the equivalence of two different pairs of conditions sufficient for rationality is proved, along with the necessity of certain weaker conditions.
@article{SM_1992_72_1_a4,
     author = {V. A. Iskovskikh},
     title = {On the rationality problem for conic bundles},
     journal = {Sbornik. Mathematics},
     pages = {105--111},
     year = {1992},
     volume = {72},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_72_1_a4/}
}
TY  - JOUR
AU  - V. A. Iskovskikh
TI  - On the rationality problem for conic bundles
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 105
EP  - 111
VL  - 72
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1992_72_1_a4/
LA  - en
ID  - SM_1992_72_1_a4
ER  - 
%0 Journal Article
%A V. A. Iskovskikh
%T On the rationality problem for conic bundles
%J Sbornik. Mathematics
%D 1992
%P 105-111
%V 72
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1992_72_1_a4/
%G en
%F SM_1992_72_1_a4
V. A. Iskovskikh. On the rationality problem for conic bundles. Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 105-111. http://geodesic.mathdoc.fr/item/SM_1992_72_1_a4/

[1] Iskovskikh V. A., “On the rationality problem for conic bundles”, Duke Math. J., 54:2 (1987), 271–294 | DOI | MR | Zbl

[2] Beauville A., “Varietes de Prym et jacobiennes intermediaires”, Ann. Sci. Ecole Norm Sup., 10 (1977), 309–391 | MR | Zbl

[3] Mori S., “Thuefolds whose canonicol bundles are not numerically effective”, Ann. of Math., 116 (1982), 133–176 | DOI | MR | Zbl

[4] Sarkisov V. G., “Biratsionalnye avtomorfizmy rassloenii na koniki”, Izv. AN SSSR. Ser. matem., 44 (1980), 918–945 | MR | Zbl

[5] Shokurov V. V., “Mnogoobraziya Prima: teoriya i prilozheniya”, Izv. AN SSSR. Ser. matem., 47 (1983), 785–855 | MR