The structure sheaf of a Banach algebra
Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 79-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a commutative loc-Banach algebra over a complete valued field a structure sheaf is defined which coincides with the Zariski sheaf in the trivially valued case. As one consequence this gives a new way of constructing the holomorphic calculus.
@article{SM_1992_72_1_a3,
     author = {S. M. Agaian},
     title = {The structure sheaf of {a~Banach} algebra},
     journal = {Sbornik. Mathematics},
     pages = {79--104},
     year = {1992},
     volume = {72},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_72_1_a3/}
}
TY  - JOUR
AU  - S. M. Agaian
TI  - The structure sheaf of a Banach algebra
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 79
EP  - 104
VL  - 72
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1992_72_1_a3/
LA  - en
ID  - SM_1992_72_1_a3
ER  - 
%0 Journal Article
%A S. M. Agaian
%T The structure sheaf of a Banach algebra
%J Sbornik. Mathematics
%D 1992
%P 79-104
%V 72
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1992_72_1_a3/
%G en
%F SM_1992_72_1_a3
S. M. Agaian. The structure sheaf of a Banach algebra. Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 79-104. http://geodesic.mathdoc.fr/item/SM_1992_72_1_a3/

[1] Guennebaud B., “Sur une notion de spectre pour les algebres normees ultrametriques”, Theses l'universite de Poitiers, Poitiers, 1973 | Zbl

[2] Felps R., Lektsii o teoremakh Shoke, Mir, M., 1968

[3] Escassut A., “The ultrametric spectral theory”, Period. Math. Hung., 11(1) (1980), 7–60 | DOI | MR | Zbl

[4] Van Rooij A. C. M., Non-Archimedean Functional Analysis, Marcel Dekker, New York and Basel, 1978 | MR

[5] Naimark M. A., Normirovannye koltsa, Nauka, M., 1968 | MR | Zbl

[6] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR

[7] Bosch S., Güntzer U., Remmert R., Non-Archimedean Analysis, Springer, Berlin, New York, 1984 | MR

[8] Tate J., “Rigid analytic spaces”, Invent. Math., 12 (1971), 257–289 | DOI | MR | Zbl