The structure sheaf of a Banach algebra
Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 79-104
Cet article a éte moissonné depuis la source Math-Net.Ru
For a commutative loc-Banach algebra over a complete valued field a structure sheaf is defined which coincides with the Zariski sheaf in the trivially valued case. As one consequence this gives a new way of constructing the holomorphic calculus.
@article{SM_1992_72_1_a3,
author = {S. M. Agaian},
title = {The structure sheaf of {a~Banach} algebra},
journal = {Sbornik. Mathematics},
pages = {79--104},
year = {1992},
volume = {72},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1992_72_1_a3/}
}
S. M. Agaian. The structure sheaf of a Banach algebra. Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 79-104. http://geodesic.mathdoc.fr/item/SM_1992_72_1_a3/
[1] Guennebaud B., “Sur une notion de spectre pour les algebres normees ultrametriques”, Theses l'universite de Poitiers, Poitiers, 1973 | Zbl
[2] Felps R., Lektsii o teoremakh Shoke, Mir, M., 1968
[3] Escassut A., “The ultrametric spectral theory”, Period. Math. Hung., 11(1) (1980), 7–60 | DOI | MR | Zbl
[4] Van Rooij A. C. M., Non-Archimedean Functional Analysis, Marcel Dekker, New York and Basel, 1978 | MR
[5] Naimark M. A., Normirovannye koltsa, Nauka, M., 1968 | MR | Zbl
[6] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR
[7] Bosch S., Güntzer U., Remmert R., Non-Archimedean Analysis, Springer, Berlin, New York, 1984 | MR
[8] Tate J., “Rigid analytic spaces”, Invent. Math., 12 (1971), 257–289 | DOI | MR | Zbl