The heat equation on noncompact Riemannian manifolds
Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 47-77

Voir la notice de l'article provenant de la source Math-Net.Ru

The behavior of the Green function $G(x,y,t)$ of the Cauchy problem for the heat equation on a connected, noncompact, complete Riemannian manifold is investigated. For manifolds with boundary it is assumed that the Green function satisfies a Neumann condition on the boundary.
@article{SM_1992_72_1_a2,
     author = {A. A. Grigor'yan},
     title = {The heat equation on noncompact {Riemannian} manifolds},
     journal = {Sbornik. Mathematics},
     pages = {47--77},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_72_1_a2/}
}
TY  - JOUR
AU  - A. A. Grigor'yan
TI  - The heat equation on noncompact Riemannian manifolds
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 47
EP  - 77
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1992_72_1_a2/
LA  - en
ID  - SM_1992_72_1_a2
ER  - 
%0 Journal Article
%A A. A. Grigor'yan
%T The heat equation on noncompact Riemannian manifolds
%J Sbornik. Mathematics
%D 1992
%P 47-77
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1992_72_1_a2/
%G en
%F SM_1992_72_1_a2
A. A. Grigor'yan. The heat equation on noncompact Riemannian manifolds. Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 47-77. http://geodesic.mathdoc.fr/item/SM_1992_72_1_a2/