The heat equation on noncompact Riemannian manifolds
Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 47-77
Voir la notice de l'article provenant de la source Math-Net.Ru
The behavior of the Green function $G(x,y,t)$ of the Cauchy problem for the heat equation on a connected, noncompact, complete Riemannian manifold is investigated. For manifolds with boundary it is assumed that the Green function satisfies a Neumann condition on the boundary.
@article{SM_1992_72_1_a2,
author = {A. A. Grigor'yan},
title = {The heat equation on noncompact {Riemannian} manifolds},
journal = {Sbornik. Mathematics},
pages = {47--77},
publisher = {mathdoc},
volume = {72},
number = {1},
year = {1992},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1992_72_1_a2/}
}
A. A. Grigor'yan. The heat equation on noncompact Riemannian manifolds. Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 47-77. http://geodesic.mathdoc.fr/item/SM_1992_72_1_a2/