On arithmetic properties of the values of hypergeometric functions
Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 267-286 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author proposes an effective method of constructing a linear approximating form for a hypergeometric function of general type and its derivatives, which has a zero of the maximal possible order at $z=0$. This construction is applied to the study of arithmetic properties of values of these functions at points of an imaginary quadratic field.
@article{SM_1992_72_1_a13,
     author = {P. L. Ivankov},
     title = {On arithmetic properties of the values of hypergeometric functions},
     journal = {Sbornik. Mathematics},
     pages = {267--286},
     year = {1992},
     volume = {72},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_72_1_a13/}
}
TY  - JOUR
AU  - P. L. Ivankov
TI  - On arithmetic properties of the values of hypergeometric functions
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 267
EP  - 286
VL  - 72
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1992_72_1_a13/
LA  - en
ID  - SM_1992_72_1_a13
ER  - 
%0 Journal Article
%A P. L. Ivankov
%T On arithmetic properties of the values of hypergeometric functions
%J Sbornik. Mathematics
%D 1992
%P 267-286
%V 72
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1992_72_1_a13/
%G en
%F SM_1992_72_1_a13
P. L. Ivankov. On arithmetic properties of the values of hypergeometric functions. Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 267-286. http://geodesic.mathdoc.fr/item/SM_1992_72_1_a13/

[1] Galochkin A. I., “O diofantovykh priblizheniyakh znachenii nekotorykh tselykh funktsii s algebraicheskimi koeffitsientami, I”, Vestn. MGU. Ser. matem., mekhan., 1978, no. 6, 25–32 | MR | Zbl

[2] Chudnovsky G. V., “The inverse scattering problem and applications to arithmetic, approximation theory and transcendental numbers”, Lect. Notes Phys., 1980, no. 120, 25–48 | MR

[3] Nikišin E. M., “Arithemetic properties of the Markov function for the Jacobi weight”, Analysis Mathematica, 8 (1982), 39–46 | DOI | MR | Zbl

[4] Vasilenko O. N., “O lineinoi nezavisimosti znachenii gipergeometricheskoi funktsii Gaussa”, Tezisy dokl. Vsesoyuz. konf. «Teoriya chisel i ee prilozheniya», Izd-vo TGU, Tbilisi, 1985, 29–31

[5] Shidlovskii A. B., “On the estimates of the algebraic independence measures of the values of $E$-functions”, J. Austral Math. Soc. Ser. A, 27 (1979), 385–407 | DOI | MR

[6] Chudnovsky G. V., “On application of diophantine approximations ($G$-functions / Padé approximation)”, Proc. Natl. Acad. Sci. USA, 81, 7261–7265 | DOI | MR | Zbl

[7] Vasilenko O. N., “O priblizhenii gipergeometricheskikh funktsii i ikh znachenii”, Diofantovy priblizheniya, ch. 1, Izd-vo MGU, M., 1985, 10–16 | MR

[8] Feldman N. I., Sedmaya problema Gilberta, Izd-vo MGU, M., 1982 | MR

[9] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967 | MR

[10] Galochkin A. I., “Utochnenie otsenok nekotorykh lineinykh form”, Matem. zametki, 20:1 (1976), 35–45 | MR | Zbl

[11] Shidlovskii A. B., Diofantovy priblizheniya i transtsendentnye chisla, Izd-vo MGU, M., 1982 | MR

[12] Galochkin A. I., “On effective bounds for certain linear forms”, New Advances in Transcendence Theory, Cambridge University Press, Cambridge, New Rochell, Melburne, Sydney, 1988, 207–215 | MR

[13] Ivankov P. L., “Otsenki snizu lineinykh form ot znachenii gipergeometricheskikh funktsii”, Diofantovy priblizheniya, ch. 2, Izd-vo MGU, M., 1986, 34–41 | MR

[14] Kudryavtsev L. D., Kurs matematicheskogo analiza, t. 1, Vysshaya shkola, M., 1981 | MR