On arithmetic properties of the values of hypergeometric functions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 267-286
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The author proposes an effective method of constructing a linear approximating form for a hypergeometric function of general type and its derivatives, which has a zero of the maximal possible order at $z=0$. This construction is applied to the study of arithmetic properties of values of these functions at points of an imaginary quadratic field.
			
            
            
            
          
        
      @article{SM_1992_72_1_a13,
     author = {P. L. Ivankov},
     title = {On arithmetic properties of the values of hypergeometric functions},
     journal = {Sbornik. Mathematics},
     pages = {267--286},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_72_1_a13/}
}
                      
                      
                    P. L. Ivankov. On arithmetic properties of the values of hypergeometric functions. Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 267-286. http://geodesic.mathdoc.fr/item/SM_1992_72_1_a13/