Quantum scattering in gauge fields of adiabatic representations
Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 221-265 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A geometric approach to the method of adiabatic representations is developed for a class of relativistic Hamiltonians. The theory is used to analyze the associated dynamical equations with effective nonabelian interactions that can be regarded as gauge fields, induced by dimensional reduction of the initial problem in a special representation. It is shown that the approach can be used to study $2\to(2,3)$ quantum scattering processes in a three-body system, and a one-to-one relation between the complete and the effective $S$-matrices is derived. Asymptotic expressions are found for the solutions of the effective dynamical equation and for the gauge fields in the adiabatic representations. The method is illustrated for systems admitting adiabatic representations with a one-dimensional base; in several cases the field operator is proved to be Hilbert–Schmidt.
@article{SM_1992_72_1_a12,
     author = {Yu. A. Kuperin and Yu. B. Melnikov},
     title = {Quantum scattering in gauge fields of adiabatic representations},
     journal = {Sbornik. Mathematics},
     pages = {221--265},
     year = {1992},
     volume = {72},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_72_1_a12/}
}
TY  - JOUR
AU  - Yu. A. Kuperin
AU  - Yu. B. Melnikov
TI  - Quantum scattering in gauge fields of adiabatic representations
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 221
EP  - 265
VL  - 72
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1992_72_1_a12/
LA  - en
ID  - SM_1992_72_1_a12
ER  - 
%0 Journal Article
%A Yu. A. Kuperin
%A Yu. B. Melnikov
%T Quantum scattering in gauge fields of adiabatic representations
%J Sbornik. Mathematics
%D 1992
%P 221-265
%V 72
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1992_72_1_a12/
%G en
%F SM_1992_72_1_a12
Yu. A. Kuperin; Yu. B. Melnikov. Quantum scattering in gauge fields of adiabatic representations. Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 221-265. http://geodesic.mathdoc.fr/item/SM_1992_72_1_a12/

[1] Born M., Oppenheimer R., “Zur Quanten Theorie der Molekulen”, Ann. der Phys., 84 (1927), 457–484 | DOI | Zbl

[2] Macek J., “Properties of autoionizing states of He”, J. Phys. B., 1 (1968), 831–843 | DOI

[3] Vinitskii S. I., Ponomarev L. I., “Adiabaticheskoe predstavlenie v zadache trekh tel s kulonovskim vzaimodeistviem”, EChAYa, 13:6 (1982), 1336–1418

[4] Braun P. A., Kiselev A. A., Vvedenie v teoriyu molekulyarnykh spektrov, Izd-vo LGU, L., 1983

[5] Kiselev A. A., “O gamiltoniane raspadayuschikhsya molekul”, Optika i spektroskopiya, 64:6 (1988), 1235–1252

[6] Berry M. V., “Quantal phase factors accompanying adiabatic changes”, Proc. Roy. Soc. A, 392 (1984), 45–57 | DOI | MR | Zbl

[7] Simon B., “Holonomy, the quantum adiabatic theorem and Berry's phase”, Phys. Rev. Lett., 51 (1983), 2167–2170 | DOI | MR

[8] Wilczek F., Zee A., “Appearance of gauge structure in simple dynamical systems”, Phys. Rev. Lett., 52 (1984), 2111–2114 | DOI | MR

[9] Moody J., Shapere A., Wilczek F., “Realization of magneticmonopole gauge fields: diatoms and spin precision”, Phys. Rev. Lett., 56 (1986), 833–896 | DOI

[10] Makarov K. A., Kuperin Yu. A., Pavlov B. S., Dubovik V. M., Markovski B. L., Vinitsky S. I., A local adiabatic representation in the few-body quantum scattering problem, Preprint FUB-HEP/87-11, FUB, Berlin(West), 1987 | MR

[11] Vinitskii S. I., Kadomtsev M. B., Suzko A. A., Adiabaticheskoe predstavlenie zadachi trekh tel v gipersfericheskikh koordinatakh. Amplituda rasseyaniya, Preprint OIYaI. R4-89-268, OIYaI, Dubna, 1989

[12] Iwai T., “A geometric setting for internal motions of the quantum three-body systems”, J. Math. Phys., 28 (1987), 1315–1326 | DOI | MR

[13] Anandan J., Stodolsky L., “Some geometrical consideration on Berry's phase”, Phys. Rev. D, 35 (1987), 2597–2599 | DOI | MR

[14] Zygelmann B., “Appearance of gauge potentials in atomic collision physics”, Phys. Lett. A, 125 (1987), 476–481 | DOI

[15] Kuperin Yu. A., Melnikov Yu. B., Pavlov B. S., “Quantum scattering problem in triangle representation and induced gauge fields”, Schrödinger operators, standard and non-standard, Proc. Intern'l Workshop. Dubna, World Scientific, Singapore, 1988, 295–319

[16] Kuperin Yu. A., Melnikov Yu. B., “Curved quantum waveguides; geometric setting for scattering problem”, Topological phases in quantum theory, Proc. Intern'l Workshop. Dubna, eds. B. Markovski, S. I. Vinitsky, World Scientific, Singapore, 1988, 146–172 | MR

[17] Kurasov P. B., Melnikov Yu. B., “Three-body scattering in one dimension: a geometric version of an adiabatic approach”, Topological phases in quantum theory, Proc. Intern'l Workshop. Dubna, eds. B. Markovski, S. I. Vinitsky, World Scientific, Singapore, 1988, 204–217 | MR

[18] Kuperin Yu. A., Kurasov P. B., Mednikov Yu. B., Merkuriev S. P., Connexions and effective $S$-matrix in triangle representation for quantum scattering, Preprint INFN-ISS 89/6, INFN, Roma, 1989

[19] Kuperin Yu. A., Melnikov Yu. B., Motovilov A. K., Three-body deuteron-nucleas scattering with extra resonance channels, Preprint INFN-ISS 89/5, INFN, Roma, 1989 | MR

[20] Jackiw R., “Three elaborations on Berry's connection, curvature and phase”, Intern. J. Mod. Phys. A, 3:2 (1988), 285–297 | DOI | MR

[21] Markovski B. L., Vinitsky S. I., Dubovik V. M., “Berry phase for linear evolution systems”, Topological phases in quantum theory, Proc. Intern'l Workshop. Dubna, eds. B. Markovski, S. I. Vinitsky, World Scientific, Singapore, 1988, 93–111 | MR

[22] Dodonov V. V., Man'ko V. I., “Adiabatic Invariants, Correlated States and Berry's Phase”, Topological phases in quantum theory, Proc. Intern'l Workshop. Dubna, eds. B. Markovski, S. I. Vinitsky, World Scientific, Singapore, 1988, 74–83

[23] Herdegen A., “Geometric structure of quantum-mechanical evolution”, Phys. Lett. A, 139 (1989), 109–111 | DOI | MR

[24] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo LGU, L., 1980 | MR

[25] Mischenko A. S., Vektornye rassloeniya i ikh primeneniya, Nauka, M., 1984 | MR

[26] Novikov S. P., Fomenko A. T., Elementy differentsialnoi geometrii i topologii, Nauka, M., 1987 | MR

[27] Merkurev S. P., Faddeev L. D., Kvantovaya teoriya rasseyaniya dlya sistem neskolkikh chastits, Nauka, M., 1985 | MR

[28] Smirnov V. I., Kurs vysshei matematiki, t. 5, Gostekhizdat, M., 1957

[29] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. T. 2: Garmonicheskii analiz. Samosopryazhennost, Mir, M., 1978 | MR

[30] Valk H. S., “Radial expectation values for central force problem and the Feynmann-Hellmann theorem”, American J. of Phys., 10 (1986), 921–923 | DOI

[31] Feshbach H., “Unified theory of nuclear reactions. I, II”, Ann. Phys. (N. Y.), 5 (1958), 357–390 ; Ibid, 19 (1962), 287–313 | DOI | MR | Zbl | MR | Zbl

[32] Merkurev S. P., “Koordinatnaya asimptotika volnovykh funktsii dlya sistemy trekh chastits”, TMF, 8:2 (1971), 235–250 | MR

[33] Fedoryuk M. V., Metod perevala, Nauka, M., 1977 | MR

[34] McGuire J. B., Hurst C. A., “Three interacting particles in one dimension: an algebraic approach”, J. Math. Phys., 29 (1988), 155–168 | DOI | MR

[35] Buslaev V. S., Merkurev S. P., Salikov S. P., “O difraktsionnom kharaktere rasseyaniya v kvantovoi sisteme trekh odnomernykh chastits”, Probl. mat. fiziki, no. 9, LGU, 1979, 14–30 | MR

[36] Kurasov P. B., “Three one-dimensional bosons with an internal structure”, Schrödinger operators, standard and non-standard, Proc. Intern'l Workshop. Dubna, World Scientific, Singapore, 1988 | MR

[37] Levin L., Teoriya volnovodov, Nauka, M., 1981

[38] Exner P., S̆eba P., Bound states in curved quantum waveguides, Preprint BiBoS Nr. 298/87, BiBoS, Bielefeld, 1987

[39] Marchenko V. A., Spektralnaya teoriya operatorov Shturma-Liuvillya, Naukova Dumka, Kiev, 1977 | MR

[40] Rikhtmaier R., Printsipy sovremennoi matematicheskoi fiziki, t. 2, Mir, M., 1984 | MR