On the behavior of trajectories of scattering billiards on the flat torus
Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 207-220 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Properties of trajectories of scattering billiards on the flat two-dimensional torus are considered. A Riemann surface is associated with such a billiard in a natural way, while the billiard flow lifts in a natural way to the manifold of linear elements of this Riemann surface. The lift of the billiard flow is a multivalued flow. The trajectories of the billiard flow are lifted from the Riemann surface to the Lobachevsky plane, and properties of the “exponential billiard mapping” are studied. On the absolute circle of the Lobachevsky plane there arise Cantor sets – “reachable sets” of the billiard flow. The metric characteristics – the Hausdorff dimension and the Pontryagin–Schnirelmann orders – of these Cantor sets are invariants of the original billiard system. The topological entropy of the billiard flow on the Riemann surface is estimated in terms of these invariants.
@article{SM_1992_72_1_a11,
     author = {I. K. Babenko},
     title = {On the behavior of trajectories of scattering billiards on the flat torus},
     journal = {Sbornik. Mathematics},
     pages = {207--220},
     year = {1992},
     volume = {72},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_72_1_a11/}
}
TY  - JOUR
AU  - I. K. Babenko
TI  - On the behavior of trajectories of scattering billiards on the flat torus
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 207
EP  - 220
VL  - 72
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1992_72_1_a11/
LA  - en
ID  - SM_1992_72_1_a11
ER  - 
%0 Journal Article
%A I. K. Babenko
%T On the behavior of trajectories of scattering billiards on the flat torus
%J Sbornik. Mathematics
%D 1992
%P 207-220
%V 72
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1992_72_1_a11/
%G en
%F SM_1992_72_1_a11
I. K. Babenko. On the behavior of trajectories of scattering billiards on the flat torus. Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 207-220. http://geodesic.mathdoc.fr/item/SM_1992_72_1_a11/

[1] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980 | MR

[2] Sinai Ya. G., “Dinamicheskie sistemy s uprugimi otrazheniyami. Ergodicheskie svoistva rasseivayuschikh bilyardov”, UMN, 25:2 (1970), 141–191 | MR

[3] Bunimovich L. A., Sinai Ya. G., “Ob odnoi teoreme teorii rasseivayuschikh bilyardov”, Matem. sb., 90 (132) (1973), 415–431 | Zbl

[4] Vekua I. N., Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959 | MR

[5] Morse M., “A fundamental class of geodesics on any clozed surface of genus greater than one”, Trans. Amer. Math. Soc., 26 (1924), 25–60 | DOI | MR | Zbl

[6] Gurevich V., Volmen G., Teoriya razmernosti, IL, M., 1948

[7] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, UMN, 14:2 (1959), 3–86 | MR

[8] Katok A., “Entropy and clozed geodesics”, Ergod. Theor. Dynam. Syst., 1982, no. 2, 339–367 | MR

[9] Manning A., “Topological entropy for geodesic flows”, Ann. of Math., 110 (1979), 567–573 | DOI | MR | Zbl

[10] Babenko I. K., “Zamknutye geodezicheskie, asimptoticheskie ob'em i kharakteristiki gruppovogo rosta”, Izv. AN SSSR, 52:4 (1988), 675–711 | MR | Zbl