Symplectic geometry and conditions necessary conditions for optimality
Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 29-45
Cet article a éte moissonné depuis la source Math-Net.Ru
With the help of a symplectic technique the concept of a field of extremals in the classical calculus of variations is generalized to optimal control problems. This enables us to get new optimality conditions that are equally suitable for regular, bang-bang, and singular extremals. Special attention is given to systems of the form $\dot x=f_0(x)+uf_1(x)$ with a scalar control. New pointwise conditions for optimality and sufficient conditions for local controllability are obtained as a consequence of the general theory.
@article{SM_1992_72_1_a1,
author = {A. A. Agrachev and R. V. Gamkrelidze},
title = {Symplectic geometry and conditions necessary conditions for optimality},
journal = {Sbornik. Mathematics},
pages = {29--45},
year = {1992},
volume = {72},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1992_72_1_a1/}
}
A. A. Agrachev; R. V. Gamkrelidze. Symplectic geometry and conditions necessary conditions for optimality. Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 29-45. http://geodesic.mathdoc.fr/item/SM_1992_72_1_a1/
[1] Agrachev A. A., “Kvadratichnye otobrazheniya v geometricheskoi teorii upravleniya”, Probl. geometrii, Itogi nauki i tekhn., VINITI, M., 1988, 111–205 | MR
[2] Agrachev A. A., Gamkrelidze R. V., “Indeks ekstremalnosti i kvaziekstremalnye upravleniya”, DAN SSSR, 284 (1985), 777–781 | MR | Zbl
[3] Agrachev A. A., Gamkrelidze R. V., “Indeksy Morsa i Maslova dlya gladkikh upravlyayuschikh sistem”, DAN SSSR, 284:3 (1986) | MR
[4] Agrachev A. A., Gamkrelidze R. V., “Kvaziekstremalnost dlya upravlyaemykh sistem”, Sovrem. probl. matem. Noveishie dostizheniya, Itogi nauki i tekhn., VINITI, M., 1989, 109–134 | MR
[5] Guillemin V., Sternberg S., Geometric Asymptolics, Math. Surveys, 14, AMS, Providence R. I., 1977 | MR | Zbl