Structural stability of control systems on orientable surfaces
Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 1-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Structural stability of a smooth control system in general position on a smooth orientable compact surface is proved. This result is an analogue for control systems of the theorem on structural stability of a smooth vector field in general position on the sphere.
@article{SM_1992_72_1_a0,
     author = {A. A. Davydov},
     title = {Structural stability of control systems on orientable surfaces},
     journal = {Sbornik. Mathematics},
     pages = {1--28},
     year = {1992},
     volume = {72},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_72_1_a0/}
}
TY  - JOUR
AU  - A. A. Davydov
TI  - Structural stability of control systems on orientable surfaces
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 1
EP  - 28
VL  - 72
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1992_72_1_a0/
LA  - en
ID  - SM_1992_72_1_a0
ER  - 
%0 Journal Article
%A A. A. Davydov
%T Structural stability of control systems on orientable surfaces
%J Sbornik. Mathematics
%D 1992
%P 1-28
%V 72
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1992_72_1_a0/
%G en
%F SM_1992_72_1_a0
A. A. Davydov. Structural stability of control systems on orientable surfaces. Sbornik. Mathematics, Tome 72 (1992) no. 1, pp. 1-28. http://geodesic.mathdoc.fr/item/SM_1992_72_1_a0/

[1] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR

[2] Arnold V. I., Teoriya katastrof, Ser. matem., kibernetika, no. 9, Znanie, M., 1981

[3] Baitman M. M., “Ob oblastyakh upravlyaemosti na ploskosti”, Differents. uravneniya, 14:4 (1978), 579–593 | MR | Zbl

[4] Davydov A. A., “Granitsa dostizhimosti mnogomernoi upravlyaemoi sistemy”, Tr. Tbil. un-ta, Matematika, mekhanika, astronomiya, 232–233, 1982, 78–96 | MR | Zbl

[5] Davydov A. A., “Normalnaya forma differentsialnogo uravneniya, ne razreshennogo otnositelno proizvodnoi, v okrestnosti ego osoboi tochki”, Funktsion. analiz i ego pril., 19:2 (1985), 1–10 | MR | Zbl

[6] Davydov A. A., “Osobennosti polei predelnykh napravlenii dvumernykh upravlyaemykh sistem”, Matem. sb., 136(178) (1988), 478–499 | MR

[7] Davydov A. A., “Osobennosti v zadachakh optimizatsii”, Teoriya operatorov v funktsion. prostranstvakh, Obz. lektsii 13 Vses. shkoly 6–13 okt., 1988, Kuibyshev, 1989, 144–155 | MR | Zbl

[8] Davydov A. A., “O zonakh nelokalnoi tranzitivnosti upravlyaemykh sistem vtorogo poryadka”, XIII Vses. shk. po teorii operatorov v funktsion. prostranstvakh, Tezisy dokladov. 6–13 okt., 1988, Kuibyshev, 1988, 62

[9] Davydov A. A., “Grubye upravlyaemye sistemy na orientiruemykh poverkhnostyakh”, Chetvertaya konferentsiya po differentsialnym uravneniyam i ikh primeneniyam. KDU-IV, Annotatsii dokladov i soobschenii (Ruse, Bolgariya, 13 avg.–19 avg. 1989), 79 | Zbl

[10] Myshkis A. D., “O differentsialnykh neravenstvakh, s lokalno ogranichennymi proizvodnymi”, Zapiski mekh.-mat. f-ta i Kharkovskogo matem. o-va, 30 (1964), 152–163

[11] Palis Zh., Di Melu V., Geometricheskaya teoriya dinamicheskikh sistem, Mir, M., 1986 | MR

[12] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Izd-vo MGU, M., 1984

[13] Filippov A. F., “Ustoichivost dlya differentsialnykh uravnenii s razryvnymi i mnogoznachnymi pravymi chastyami”, Differents, uravneniya, 15:6 (1979), 1018–1027 | MR | Zbl

[14] Filippov A. F., “Osobye tochki differentsialnykh vklyuchenii na ploskosti”, Vestn. MGU. Ser. matematika, mekhanika, 1985, no. 6, 46–52 | Zbl

[15] Peixoto M. M., “Structural stability on two-dimensional manifolds”, Topology, 1:2 (1962), 101–120 | DOI | MR | Zbl

[16] Peixoto M. C., Peixoto M. M., “Structural stability in the plane with enlarged boundary conditions”, Anais Academia Brasilera de Ciencias, 31:2 (1959), 135–160 | MR | Zbl