On nilpotency of graded associative algebras
Sbornik. Mathematics, Tome 71 (1992) no. 2, pp. 419-425 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that an associative PI-algebra over a field of characteristic zero that is graded by an arbitrary semigroup and that satisfies the relation $a^n=0$ for all homogeneous elements and is generated by a finite number of its homogeneous components is nilpotent. This generalizes a well-known theorem of M. Nagata.
@article{SM_1992_71_2_a9,
     author = {A. D. Chanyshev},
     title = {On nilpotency of graded associative algebras},
     journal = {Sbornik. Mathematics},
     pages = {419--425},
     year = {1992},
     volume = {71},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_71_2_a9/}
}
TY  - JOUR
AU  - A. D. Chanyshev
TI  - On nilpotency of graded associative algebras
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 419
EP  - 425
VL  - 71
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1992_71_2_a9/
LA  - en
ID  - SM_1992_71_2_a9
ER  - 
%0 Journal Article
%A A. D. Chanyshev
%T On nilpotency of graded associative algebras
%J Sbornik. Mathematics
%D 1992
%P 419-425
%V 71
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1992_71_2_a9/
%G en
%F SM_1992_71_2_a9
A. D. Chanyshev. On nilpotency of graded associative algebras. Sbornik. Mathematics, Tome 71 (1992) no. 2, pp. 419-425. http://geodesic.mathdoc.fr/item/SM_1992_71_2_a9/

[1] Nagata M., “On the nilpotency of nil algebras”, J. Math. Soc. Japan, 4 (1952), 296–301 | MR | Zbl

[2] Shirshov A. I., “O nekotorykh neassotsiativnykh nilkoltsakh i algebraicheskikh algebrakh”, Matem. sb., 41(83) (1957), 381–394 | Zbl

[3] Zelmanov E. I., “Ob engelevykh algebrakh Li”, Sib. matem. zhurn., 29:5 (1988), 112–117 | MR | Zbl

[4] Kostrikin A. I., Around Burnside, Springer-Verlag, 1989 | MR

[5] Thue A., “Über unendliche Zeichenreiken”, Norske Vid. Selsk. Skr., I Mat. Nat. Kl, 7, Christiania, 1906, 1–22

[6] Evdokimov A. A., “O silno asimmetrichnykh posledovatelnostyakh, porozhdennykh konechnym chislom simvolov”, DAN, 179:6 (1968), 1268–1271 | MR | Zbl