The structure of compact sets generating normal domains and removable singularities for the space $L_p^1(D)$
Sbornik. Mathematics, Tome 71 (1992) no. 2, pp. 405-418 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of the properties of $p$-normal domains in $R^n$ ($1), which will be minimal in the Köbe sense or normal in the Grötzsch sense when $n=p=2$. Descriptions are obtained of removable singularities for the space $L_p^1(D)$ and for compact sets generating $p$-normal domains, in terms of the theory of contingencies and $(n-1)$-dimensional bi-Lipschitz $NC_p$-compact sets.
@article{SM_1992_71_2_a8,
     author = {V. A. Shlyk},
     title = {The structure of compact sets generating normal domains and removable singularities for the space~$L_p^1(D)$},
     journal = {Sbornik. Mathematics},
     pages = {405--418},
     year = {1992},
     volume = {71},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_71_2_a8/}
}
TY  - JOUR
AU  - V. A. Shlyk
TI  - The structure of compact sets generating normal domains and removable singularities for the space $L_p^1(D)$
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 405
EP  - 418
VL  - 71
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1992_71_2_a8/
LA  - en
ID  - SM_1992_71_2_a8
ER  - 
%0 Journal Article
%A V. A. Shlyk
%T The structure of compact sets generating normal domains and removable singularities for the space $L_p^1(D)$
%J Sbornik. Mathematics
%D 1992
%P 405-418
%V 71
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1992_71_2_a8/
%G en
%F SM_1992_71_2_a8
V. A. Shlyk. The structure of compact sets generating normal domains and removable singularities for the space $L_p^1(D)$. Sbornik. Mathematics, Tome 71 (1992) no. 2, pp. 405-418. http://geodesic.mathdoc.fr/item/SM_1992_71_2_a8/

[1] Tamrazov P. M., “Konformno-metricheskie moduli i krugovaya simmetrizatsiya”, Metricheskie voprosy teorii funktsii i otobrazhenii, no. 5, Naukova dumka, Kiev, 1974, 127–146 | MR

[2] Grötzsch H., “Zur Parallelschlitztheorem der Ronformen Abbildung schlichter unendlich-vielfach zusammenhängender Be-Reiche”, Leipziger Ber., 83:3 (1931), 185–200 | Zbl

[3] Koebe P., “Zur konformen Abbildung unendlich vielfach zusammenhangender schlichter Bereiche auf Schlitzbereiche”, Gott. Nachr., Math.-Phys. Kl, 1918, 60–71 | Zbl

[4] Sario L., Oikawa K., Capacity functions, Springer, Berlin, 1969 | MR | Zbl

[5] Dzhenkins D., Odnolistnye funktsii i konformnye otobrazheniya, IL, M., 1962

[6] Keldysh M. V., “Konformnoe otobrazhenie mnogosvyaznykh oblastei na kanonicheskie oblasti”, UMN, 1939, no. 6, 90–119 | MR | Zbl

[7] Vodopyanov S. K., Goldshtein V. M., “Kriterii ustranimosti mnozhestv dlya prostranstv $L_p^1$, kvazikonformnykh i kvaziizometricheskikh otobrazhenii”, Sib. matem. zhurn., 18:1 (1977), 48–68 | MR | Zbl

[8] Ahlfors L., Beurling A., “Conformal invariants and functions-theoretic null-sets”, Acta Math., 38 (1950), 101–129 | MR

[9] Väisälä J., “On the null-sets for extremal distances”, Ann. Acad. Sci. Fenn. Ser. A, 1962, no. 322, 1–12 | MR

[10] Aseev V. V., Sychev A. V., “O mnozhestvakh, ustranimykh dlya prostranstvennykh kvazikonformnykh otobrazhenii”, Sib. matem. zhurn., 15:6 (1974), 1213–1227 | MR | Zbl

[11] Hedberg L. I., “Removable singularities and condenser capacities”, Arkiv matem., 12:2 (1974), 181–201 | DOI | MR | Zbl

[12] Väisälä J., “Removable sets for quasiconformal mappings”, J. Math. Mech., 19:1 (1969), 49–51 | MR | Zbl

[13] Miklyukov V. M., “Ob ustranimykh osobennostyakh kvazikonformnykh otobrazhenii v prostranstve”, DAN SSSR, 188:3 (1969), 525–527 | Zbl

[14] Aseev V. V., “Primer $NED$-mnozhestva v $n$-mernom evklidovom prostranstve, imeyuschego polozhitelnuyu $(n-1)$-mernuyu meru Khausdorfa”, DAN SSSR, 216:4 (1974), 717–720 | MR | Zbl

[15] Kopylov A. P., “Ob ustranimosti ploskikh mnozhestv v klasse trekhmernykh kvazikonformnykh otobrazhenii”, Metricheskie voprosy teorii funktsii i otobrazhenii, no. 1, Naukova dumka, Kiev, 1964, 21–23

[16] Kopylov A. P., Pesin I. N., “Ustranimost nekotorykh mnozhestv v klasse trekhmernykh kvazikonformnykh otobrazhenii”, Matem. zametki, 7:6 (1970), 717–722 | MR | Zbl

[17] Reich E., Warschawski S. E., “On canonical conformal maps of regions of arbitrary connectivity”, Pacif. J. Math., 10:3 (1960), 965–989 | MR

[18] Tamrazov P. M., Metod ekstremalnoi metriki i konformnoe otobrazhenie, Dis. ... kand. fiz.-matem. nauk, KPI, Kiev, 1963

[19] Saks S., Teoriya integrala, IL, M., 1949

[20] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl

[21] Ivanov L. D., Variatsii mnozhestv i funktsii, Nauka, M., 1975 | MR

[22] Hesse J., “A $p$-extremal length and $p$-capacity equality”, Arkiv matem., 13:1 (1975), 131–144 | DOI | MR | Zbl

[23] Goldshtein V. M., Reshetnyak Yu. G., Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983 | MR

[24] Yamamoto H., “On a $p$-capacity of a condenser and $KD^p$-null-sets”, Hiroshima Math. J., 8:1 (1978), 123–150 | MR | Zbl

[25] Shlyk V. A., “K teorii normalnykh oblastei”, Zap. nauchnykh seminarov LOMI, 168 (1988), 180–186 | Zbl

[26] Sakai M., “On extremal sets of parallel slits”, Hiroshima Math. J., 5:3 (1975), 499–516 | MR | Zbl

[27] Yamamoto H., “On null sets for extremal distances of order $p$”, Mem. Fac. Sci. Kochi. Univ. Math. Ser. A, 3 (1982), 37–49 | MR | Zbl

[28] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR

[29] Krivov V. V., “Metod eksperimentalnykh funktsii v teorii kvazikonformnykh otobrazhenii”, Sib. matem. zhurn., 12:5 (1971), 1056–1066 | MR | Zbl