The structure of compact sets generating normal domains and removable singularities for the space~$L_p^1(D)$
Sbornik. Mathematics, Tome 71 (1992) no. 2, pp. 405-418

Voir la notice de l'article provenant de la source Math-Net.Ru

A study is made of the properties of $p$-normal domains in $R^n$ ($1$), which will be minimal in the Köbe sense or normal in the Grötzsch sense when $n=p=2$. Descriptions are obtained of removable singularities for the space $L_p^1(D)$ and for compact sets generating $p$-normal domains, in terms of the theory of contingencies and $(n-1)$-dimensional bi-Lipschitz $NC_p$-compact sets.
@article{SM_1992_71_2_a8,
     author = {V. A. Shlyk},
     title = {The structure of compact sets generating normal domains and removable singularities for the space~$L_p^1(D)$},
     journal = {Sbornik. Mathematics},
     pages = {405--418},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_71_2_a8/}
}
TY  - JOUR
AU  - V. A. Shlyk
TI  - The structure of compact sets generating normal domains and removable singularities for the space~$L_p^1(D)$
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 405
EP  - 418
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1992_71_2_a8/
LA  - en
ID  - SM_1992_71_2_a8
ER  - 
%0 Journal Article
%A V. A. Shlyk
%T The structure of compact sets generating normal domains and removable singularities for the space~$L_p^1(D)$
%J Sbornik. Mathematics
%D 1992
%P 405-418
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1992_71_2_a8/
%G en
%F SM_1992_71_2_a8
V. A. Shlyk. The structure of compact sets generating normal domains and removable singularities for the space~$L_p^1(D)$. Sbornik. Mathematics, Tome 71 (1992) no. 2, pp. 405-418. http://geodesic.mathdoc.fr/item/SM_1992_71_2_a8/