The structure of compact sets generating normal domains and removable singularities for the space~$L_p^1(D)$
Sbornik. Mathematics, Tome 71 (1992) no. 2, pp. 405-418
Voir la notice de l'article provenant de la source Math-Net.Ru
A study is made of the properties of $p$-normal domains in $R^n$ ($1$), which will be minimal in the Köbe sense or normal in the Grötzsch sense when $n=p=2$. Descriptions are obtained of removable singularities for the space $L_p^1(D)$ and for compact sets generating $p$-normal domains, in terms of the theory of contingencies and $(n-1)$-dimensional bi-Lipschitz $NC_p$-compact sets.
@article{SM_1992_71_2_a8,
author = {V. A. Shlyk},
title = {The structure of compact sets generating normal domains and removable singularities for the space~$L_p^1(D)$},
journal = {Sbornik. Mathematics},
pages = {405--418},
publisher = {mathdoc},
volume = {71},
number = {2},
year = {1992},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1992_71_2_a8/}
}
TY - JOUR AU - V. A. Shlyk TI - The structure of compact sets generating normal domains and removable singularities for the space~$L_p^1(D)$ JO - Sbornik. Mathematics PY - 1992 SP - 405 EP - 418 VL - 71 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1992_71_2_a8/ LA - en ID - SM_1992_71_2_a8 ER -
V. A. Shlyk. The structure of compact sets generating normal domains and removable singularities for the space~$L_p^1(D)$. Sbornik. Mathematics, Tome 71 (1992) no. 2, pp. 405-418. http://geodesic.mathdoc.fr/item/SM_1992_71_2_a8/