On a conjecture on sums of multiplicative functions
Sbornik. Mathematics, Tome 71 (1992) no. 2, pp. 387-403 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the following conjecture, which was made in 1970 by B. V. Levin and A. S. Fainleib; if $f\in W$, $f(p)\leqslant g(p)$, $\sum_{p\leqslant x}g(p)\ln p\sim\tau_gx$, and (2) is fulfilled with $\tau_f\ne0$, then (1) holds. We prove that this conjecture holds if $\tau_f\cdot\tau_g >0$. In the case $\tau_f\cdot\tau_g\leqslant0$ we construct a counterexample to the conjecture. The asymptotic behavior of the sum of values of the function is found by an analytic method.
@article{SM_1992_71_2_a7,
     author = {S. T. Tulyaganov},
     title = {On a~conjecture on sums of multiplicative functions},
     journal = {Sbornik. Mathematics},
     pages = {387--403},
     year = {1992},
     volume = {71},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_71_2_a7/}
}
TY  - JOUR
AU  - S. T. Tulyaganov
TI  - On a conjecture on sums of multiplicative functions
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 387
EP  - 403
VL  - 71
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1992_71_2_a7/
LA  - en
ID  - SM_1992_71_2_a7
ER  - 
%0 Journal Article
%A S. T. Tulyaganov
%T On a conjecture on sums of multiplicative functions
%J Sbornik. Mathematics
%D 1992
%P 387-403
%V 71
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1992_71_2_a7/
%G en
%F SM_1992_71_2_a7
S. T. Tulyaganov. On a conjecture on sums of multiplicative functions. Sbornik. Mathematics, Tome 71 (1992) no. 2, pp. 387-403. http://geodesic.mathdoc.fr/item/SM_1992_71_2_a7/

[1] Delange H., “Sur les fonctions arithmetiques multiplicatives”, Ann. Scient. Ec. Norm. Sup. 3-e ser., 78 (1961), 273–304 | MR | Zbl

[2] Erdös P., Renyi A., “On the mean value of non negative multiplicative number theoretical functions”, Michigan Journ. Math., 12 (1965), 321–328 | DOI | MR

[3] Elliott P. D. T. A., “A mean-value theorems for multiplicative functions bounded in mean $\alpha$-power, $\alpha>1$”, J. Austral. Math. Soc. Ser. A7 28, 1980, 177–205 | DOI | MR | Zbl

[4] Halasz G., “Über die Mittelwerte multiplikativer zahlen - theoretical Function”, Acta Math. Acad. Sci. Hungar, 19 (1968), 365–404 | DOI | MR

[5] Wirsing E., “Das asymptotische Varhalten von Summen über multiplicative Functionen”, Math. Ann., 143 (1961), 76–102 | DOI | MR

[6] Wirsing E., “Das Asymptotische Verhalten von Summen über multiplicative Funktionen, 11”, Acta Math. Acad. Sci. Hungar, 18 (1967), 411–467 | DOI | MR | Zbl

[7] Kubilyus I. P., “Metod proizvodyaschikh ryadov Dirikhle v teorii raspredeleniya arifmeticheskikh additivnykh funktsii”, Litov. mat. sb., 11:1 (1971), 125–134

[8] Levin B. V., Timofeev N. M., “Teorema sravneniya dlya multiplikativnykh funktsii”, Acta Arithmetica, 42 (1982), 21–47 | MR | Zbl

[9] Levin B. V., Fainleib A. S., “Ob odnom metode summirovaniya multiplikativnykh funktsii”, Izv. AN SSSR. Ser. matem., 31 (1967), 697–710 | MR | Zbl

[10] Levin B. V., Fainleib A. S., “Multiplikativnye funktsii i veroyatnostnaya teoriya chisel”, Izv. AN SSSR. Ser. matem., 34 (1970), 1064–1109 | MR | Zbl

[11] Timofeev N. M., “Primenenie analiticheskogo metoda k summirovaniyu multiplikativnykh funktsii”, Uchenye zapiski Vladimirovskogo GPI, 1971, 204–249 | MR

[12] Titchmarsh E., Teoriya funktsii, Nauka, M., 1980 | MR | Zbl

[13] Tulyaganov S. T., Summy multiplikativnykh funktsii, silno rastuschikh v stepenyakh prostykh chisel, Dep