Spectral functions of a~canonical system of order~$2n$
Sbornik. Mathematics, Tome 71 (1992) no. 2, pp. 355-369
Voir la notice de l'article provenant de la source Math-Net.Ru
The author describes a set of pseudospectral functions of the canonical system of differential equations
$$
\frac{dW(x,\lambda)}{dx}=i\lambda JH(x)W(x,\lambda), \qquad W(0,\lambda)=E_{2n},
$$
where $0\leqslant x\leqslant l\infty$, $H(x)=H^*(x)\geqslant 0$,
$J=\begin{bmatrix}0\\E_n0\end{bmatrix}$.
In terms of the Hamiltonians $H(x)$, conditions are given under which the pseudospectral functions are spectral functions.
@article{SM_1992_71_2_a5,
author = {A. L. Sakhnovich},
title = {Spectral functions of a~canonical system of order~$2n$},
journal = {Sbornik. Mathematics},
pages = {355--369},
publisher = {mathdoc},
volume = {71},
number = {2},
year = {1992},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1992_71_2_a5/}
}
A. L. Sakhnovich. Spectral functions of a~canonical system of order~$2n$. Sbornik. Mathematics, Tome 71 (1992) no. 2, pp. 355-369. http://geodesic.mathdoc.fr/item/SM_1992_71_2_a5/