Spectral functions of a~canonical system of order~$2n$
Sbornik. Mathematics, Tome 71 (1992) no. 2, pp. 355-369

Voir la notice de l'article provenant de la source Math-Net.Ru

The author describes a set of pseudospectral functions of the canonical system of differential equations $$ \frac{dW(x,\lambda)}{dx}=i\lambda JH(x)W(x,\lambda), \qquad W(0,\lambda)=E_{2n}, $$ where $0\leqslant x\leqslant l\infty$, $H(x)=H^*(x)\geqslant 0$, $J=\begin{bmatrix}0\\E_n0\end{bmatrix}$. In terms of the Hamiltonians $H(x)$, conditions are given under which the pseudospectral functions are spectral functions.
@article{SM_1992_71_2_a5,
     author = {A. L. Sakhnovich},
     title = {Spectral functions of a~canonical system of order~$2n$},
     journal = {Sbornik. Mathematics},
     pages = {355--369},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_71_2_a5/}
}
TY  - JOUR
AU  - A. L. Sakhnovich
TI  - Spectral functions of a~canonical system of order~$2n$
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 355
EP  - 369
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1992_71_2_a5/
LA  - en
ID  - SM_1992_71_2_a5
ER  - 
%0 Journal Article
%A A. L. Sakhnovich
%T Spectral functions of a~canonical system of order~$2n$
%J Sbornik. Mathematics
%D 1992
%P 355-369
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1992_71_2_a5/
%G en
%F SM_1992_71_2_a5
A. L. Sakhnovich. Spectral functions of a~canonical system of order~$2n$. Sbornik. Mathematics, Tome 71 (1992) no. 2, pp. 355-369. http://geodesic.mathdoc.fr/item/SM_1992_71_2_a5/