@article{SM_1992_71_2_a5,
author = {A. L. Sakhnovich},
title = {Spectral functions of a~canonical system of order~$2n$},
journal = {Sbornik. Mathematics},
pages = {355--369},
year = {1992},
volume = {71},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1992_71_2_a5/}
}
A. L. Sakhnovich. Spectral functions of a canonical system of order $2n$. Sbornik. Mathematics, Tome 71 (1992) no. 2, pp. 355-369. http://geodesic.mathdoc.fr/item/SM_1992_71_2_a5/
[1] Kats I. S., Krein M. G., “O spektralnykh funktsiyakh struny”, Atkinson F. Diskretnye i nepreryvnye zadachi, Mir, M., 1968 | MR
[2] Sakhnovich L. A., “Zadachi faktorizatsii i operatornye tozhdestva”, UMN, 41:1 (1986), 3–55 | MR | Zbl
[3] Sakhnovich A. L., K spektralnoi teorii kanonicheskikh sistem, Dep. v VINITI 25.06.87, No4657-87, Odessa, 1987
[4] Sakhnovich A. L., “Ob odnom klasse ekstremalnykh zadach”, Izv. AN SSSR. Ser. matem., 51 (1987), 436–443 | MR | Zbl
[5] Sakhnovich A. L., “Asimptotika spektralnykh funktsii $S$-uzla”, Izv. Vuzov. Matem., 1988, no. 9, 62–72 | MR | Zbl
[6] Vladimirov V. S., Volovich I. V., “Ob odnoi modeli statisticheskoi fiziki”, TMF, 54 (1983), 8–22 | MR
[7] Gonchar A. A., “O skhodimosti approksimatsii Pade dlya nekotorykh klassov meromorfnykh funktsii”, Matem. sb., 97(139) (1975), 607–629 | Zbl
[8] Aptekarev A. I., Nikishin E. M., “Zadacha rasseyaniya dlya diskretnogo operatora Shturma - Liuvillya”, Matem. sb., 121(163) (1983), 327–358 | MR | Zbl
[9] De Branges L., Hilbert Spaces of Entire Functiones, Prentice Hall, N. Y., 1968 | MR | Zbl
[10] Kats I. S., Lineinye otnosheniya, porozhdaemye kanonicheskim differentsialnym uravneniem na intervale s regulyarnym kontsom, i razlozhimost po sobstvennym funktsiyam, Dep. v UkrNIINTI, No1453-84, Odessa, 1984
[11] De Branges L., The Expansion, Theorem for Hilbert Spaces of Entire Functiones, Entire Functiones and Related Part of Analysis, AMS, N. Y., 1968
[12] Potapov V. P., “Osnovnye fakty teorii $J$-nerastyagivayuschikh matrits-funktsii”, Tezisy dokladov Vsesoyuznoi konferentsii po teorii funktsii kompleksnoi peremennoi, Kharkov, 1971, 179–181
[13] Katsnelson V. E., “Kontinualnye analogi teorem Gamburgera - Nevanlinny i osnovnye matrichnye neravenstva klassicheskikh zadach 5”, Teoriya funktsii, funktsion. analiz i ikh pril., 1983, no. 40, 79–90 | MR | Zbl
[14] Ivanchenko T. S., Sakhnovich L. A., Operatornyi podkhod k issledovaniyu interpolyatsionnykh problem, Dep. v UkrNIINTI, No701-85, Odessa, 1985
[15] Golinskii L. B., Mikhailova I. V., Gilbertovy prostranstva tselykh funktsii kak ob'ekt $J$-teorii, Preprint FTINT. 28-80, FTINT, Kharkov, 1980
[16] Akhiezer N. I., Klassicheskaya problema momentov, Fizmatgiz, M., 1961
[17] Livshits M. S., Operatory, kolebaniya, volny, Nauka, M., 1966 | Zbl
[18] Kholkin A. M., “Opisanie samosopryazhennykh rasshirenii differentsialnykh operatorov proizvolnogo poryadka na beskonechnom intervale v absolyutno neopredelennom sluchae”, Teoriya funktsii, funktsion. analiz i ikh pril., 1985, no. 44, 112–122 | MR | Zbl
[19] Arov D. Z., Krein M. G., “Zadacha ob otyskanii minimuma entropii v neopredelennykh problemakh prodolzheniya”, Funktsion. analiz i ego pril., 15:2 (1981), 73–76 | MR
[20] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, GITTL, M., 1950