Spectral functions of a canonical system of order $2n$
Sbornik. Mathematics, Tome 71 (1992) no. 2, pp. 355-369 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author describes a set of pseudospectral functions of the canonical system of differential equations $$ \frac{dW(x,\lambda)}{dx}=i\lambda JH(x)W(x,\lambda), \qquad W(0,\lambda)=E_{2n}, $$ where $0\leqslant x\leqslant l<\infty$, $H(x)=H^*(x)\geqslant 0$, $J=\begin{bmatrix}0&E_n\\E_n&0\end{bmatrix}$. In terms of the Hamiltonians $H(x)$, conditions are given under which the pseudospectral functions are spectral functions.
@article{SM_1992_71_2_a5,
     author = {A. L. Sakhnovich},
     title = {Spectral functions of a~canonical system of order~$2n$},
     journal = {Sbornik. Mathematics},
     pages = {355--369},
     year = {1992},
     volume = {71},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_71_2_a5/}
}
TY  - JOUR
AU  - A. L. Sakhnovich
TI  - Spectral functions of a canonical system of order $2n$
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 355
EP  - 369
VL  - 71
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1992_71_2_a5/
LA  - en
ID  - SM_1992_71_2_a5
ER  - 
%0 Journal Article
%A A. L. Sakhnovich
%T Spectral functions of a canonical system of order $2n$
%J Sbornik. Mathematics
%D 1992
%P 355-369
%V 71
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1992_71_2_a5/
%G en
%F SM_1992_71_2_a5
A. L. Sakhnovich. Spectral functions of a canonical system of order $2n$. Sbornik. Mathematics, Tome 71 (1992) no. 2, pp. 355-369. http://geodesic.mathdoc.fr/item/SM_1992_71_2_a5/

[1] Kats I. S., Krein M. G., “O spektralnykh funktsiyakh struny”, Atkinson F. Diskretnye i nepreryvnye zadachi, Mir, M., 1968 | MR

[2] Sakhnovich L. A., “Zadachi faktorizatsii i operatornye tozhdestva”, UMN, 41:1 (1986), 3–55 | MR | Zbl

[3] Sakhnovich A. L., K spektralnoi teorii kanonicheskikh sistem, Dep. v VINITI 25.06.87, No4657-87, Odessa, 1987

[4] Sakhnovich A. L., “Ob odnom klasse ekstremalnykh zadach”, Izv. AN SSSR. Ser. matem., 51 (1987), 436–443 | MR | Zbl

[5] Sakhnovich A. L., “Asimptotika spektralnykh funktsii $S$-uzla”, Izv. Vuzov. Matem., 1988, no. 9, 62–72 | MR | Zbl

[6] Vladimirov V. S., Volovich I. V., “Ob odnoi modeli statisticheskoi fiziki”, TMF, 54 (1983), 8–22 | MR

[7] Gonchar A. A., “O skhodimosti approksimatsii Pade dlya nekotorykh klassov meromorfnykh funktsii”, Matem. sb., 97(139) (1975), 607–629 | Zbl

[8] Aptekarev A. I., Nikishin E. M., “Zadacha rasseyaniya dlya diskretnogo operatora Shturma - Liuvillya”, Matem. sb., 121(163) (1983), 327–358 | MR | Zbl

[9] De Branges L., Hilbert Spaces of Entire Functiones, Prentice Hall, N. Y., 1968 | MR | Zbl

[10] Kats I. S., Lineinye otnosheniya, porozhdaemye kanonicheskim differentsialnym uravneniem na intervale s regulyarnym kontsom, i razlozhimost po sobstvennym funktsiyam, Dep. v UkrNIINTI, No1453-84, Odessa, 1984

[11] De Branges L., The Expansion, Theorem for Hilbert Spaces of Entire Functiones, Entire Functiones and Related Part of Analysis, AMS, N. Y., 1968

[12] Potapov V. P., “Osnovnye fakty teorii $J$-nerastyagivayuschikh matrits-funktsii”, Tezisy dokladov Vsesoyuznoi konferentsii po teorii funktsii kompleksnoi peremennoi, Kharkov, 1971, 179–181

[13] Katsnelson V. E., “Kontinualnye analogi teorem Gamburgera - Nevanlinny i osnovnye matrichnye neravenstva klassicheskikh zadach 5”, Teoriya funktsii, funktsion. analiz i ikh pril., 1983, no. 40, 79–90 | MR | Zbl

[14] Ivanchenko T. S., Sakhnovich L. A., Operatornyi podkhod k issledovaniyu interpolyatsionnykh problem, Dep. v UkrNIINTI, No701-85, Odessa, 1985

[15] Golinskii L. B., Mikhailova I. V., Gilbertovy prostranstva tselykh funktsii kak ob'ekt $J$-teorii, Preprint FTINT. 28-80, FTINT, Kharkov, 1980

[16] Akhiezer N. I., Klassicheskaya problema momentov, Fizmatgiz, M., 1961

[17] Livshits M. S., Operatory, kolebaniya, volny, Nauka, M., 1966 | Zbl

[18] Kholkin A. M., “Opisanie samosopryazhennykh rasshirenii differentsialnykh operatorov proizvolnogo poryadka na beskonechnom intervale v absolyutno neopredelennom sluchae”, Teoriya funktsii, funktsion. analiz i ikh pril., 1985, no. 44, 112–122 | MR | Zbl

[19] Arov D. Z., Krein M. G., “Zadacha ob otyskanii minimuma entropii v neopredelennykh problemakh prodolzheniya”, Funktsion. analiz i ego pril., 15:2 (1981), 73–76 | MR

[20] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, GITTL, M., 1950