On uniform stabilization of solutions of the first mixed problem for a parabolic equation
Sbornik. Mathematics, Tome 71 (1992) no. 2, pp. 331-353 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The first mixed problem with a homogeneous boundary condition is considered for a linear parabolic equation of second order. It is assumed that the unbounded domain $\Omega$ satisfies the following condition: there exists a positive constant $\theta$ such that for any point $x$ of the boundary $\partial\Omega$ $$ \operatorname{mes}(\{y\colon|x-y|<r\}\setminus\Omega)\geqslant\theta r^n, \quad r>0. $$ For a certain class of initial functions $\varphi$, which includes all bounded functions, the following condition is a necessary and sufficient condition for uniform stabilization of the solution to zero: $\displaystyle r^{-n}\int_{|x-y| as $r\to\infty$ uniformly with respect to all $x$ in $\Omega$ such that $\operatorname{dist}(x,\partial\Omega)\geqslant r+1$. The proof of the stabilization condition is based on an estimate of the Green function that takes account of its decay near the boundary.
@article{SM_1992_71_2_a4,
     author = {F. Kh. Mukminov},
     title = {On uniform stabilization of solutions of the first mixed problem for a~parabolic equation},
     journal = {Sbornik. Mathematics},
     pages = {331--353},
     year = {1992},
     volume = {71},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_71_2_a4/}
}
TY  - JOUR
AU  - F. Kh. Mukminov
TI  - On uniform stabilization of solutions of the first mixed problem for a parabolic equation
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 331
EP  - 353
VL  - 71
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1992_71_2_a4/
LA  - en
ID  - SM_1992_71_2_a4
ER  - 
%0 Journal Article
%A F. Kh. Mukminov
%T On uniform stabilization of solutions of the first mixed problem for a parabolic equation
%J Sbornik. Mathematics
%D 1992
%P 331-353
%V 71
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1992_71_2_a4/
%G en
%F SM_1992_71_2_a4
F. Kh. Mukminov. On uniform stabilization of solutions of the first mixed problem for a parabolic equation. Sbornik. Mathematics, Tome 71 (1992) no. 2, pp. 331-353. http://geodesic.mathdoc.fr/item/SM_1992_71_2_a4/

[1] Kamin S., “On stabilisation of solutions of the Cauchy problem for parabolic equations”, Proc. Roy. Soc. Edinburgh, Sect. A, 76:1 (1976), 43–53 | MR | Zbl

[2] Zhikov V. V., “O stabilizatsii reshenii parabolicheskikh uravnenii”, Matem. sb., 104(146) (1977), 597–616 | Zbl

[3] Guschin A. K., “O ravnomernoi stabilizatsii reshenii vtoroi smeshannoi zadachi dlya parabolicheskogo uravneniya”, Matem. sb., 119(161) (1982), 451–508

[4] Guschin A. K., Mikhailov V. P., Mikhailov Yu. A., “O ravnomernoi stabilizatsii resheniya vtoroi smeshannoi zadachi dlya parabolicheskogo uravneniya vtorogo poryadka”, Matem. sb., 128(170) (1985), 147–168 | MR | Zbl

[5] Porper F. O., “O stabilizatsii resheniya zadachi Koshi dlya parabolicheskogo uravneniya s peremennymi koeffitsientami”, DAN SSSR, 153 (1963), 273–275 | MR | Zbl

[6] Eidelman S. D., Parabolicheskie sistemy, Nauka, M., 1964 | MR

[7] Repnikov V. D., “O ravnomernoi stabilizatsii resheniya zadachi Koshi dlya parabolicheskikh uravnenii”, DAN SSSR, 157 (1964), 532–535 | MR | Zbl

[8] Repnikov V. D., Eidelman S. D., “Novoe dokazatelstvo teoremy o stabilizatsii resheniya zadachi Koshi dlya uravneniya teploprovodnosti”, Matem. sb., 73(115) (1967), 155–159 | MR | Zbl

[9] Drozhzhinov Yu. N., “Stabilizatsiya resheniya obobschennoi zadachi Koshi dlya ultraparabolicheskogo uravneniya”, Izv. AN SSSR. Ser. matem., 33 (1969), 368–379

[10] Drozhzhinov Yu. N., Zavyalov B. I., “Kvaziasimptotika obobschennykh funktsii i tauberovy teoremy v kompleksnoi oblasti”, Matem. sb., 102(144) (1977), 372–390 | Zbl

[11] Denisov V. N., “O neobkhodimom uslovii ravnomernoi stabilizatsii resheniya zadachi Koshi dlya uravneniya teploprovodnosti”, DAN SSSR, 255 (1980), 1310–1312 | MR | Zbl

[12] Guschin A. K., Mikhailov V. P., “O stabilizatsii resheniya zadachi Koshi dlya odnomernogo parabolicheskogo uravneniya”, DAN SSSR, 197 (1971), 257–260 | Zbl

[13] Guschin A. K., Mikhailov V. P., “O stabilizatsii resheniya zadachi Koshi dlya parabolicheskogo uravneniya s odnoi prostranstvennoi peremennoi”, Tr. MIAN SSSR, 112 (1971), 181–202 | Zbl

[14] Porper F. O., Eidelman S. D., “Teoremy o blizosti reshenii parabolicheskikh uravnenii i stabilizatsiya reshenii zadachi Koshi”, DAN SSSR, 221 (1975), 32–35 | MR | Zbl

[15] Porper F. O., Eidelman S. D., “Asimptoticheskoe povedenie klassicheskikh i obobschennykh reshenii odnomernykh parabolicheskikh uravnenii vtorogo poryadka”, Tr. MMO, 36 (1978), 85–130 | MR | Zbl

[16] Bagirov L. A., Shubin M. A., “O stabilizatsii resheniya zadachi Koshi dlya parabolicheskikh uravnenii s koeffitsientami, pochti-periodicheskimi po prostranstvennym peremennym”, Differents. uravneniya, 11 (1975), 2205–2209 | MR | Zbl

[17] Denisov V. I., “O stabilizatsii resheniya zadachi Koshi dlya uravneniya teploprovodnosti”, Differents. uravneniya, 24 (1988), 288–299 | MR | Zbl

[18] Nash J., “Continuity of solutions of parabolic and elliptic equatious”, Amer. J. Math., 80 (1958), 931–954 | DOI | MR | Zbl

[19] Moser J., “A Harnack's inequality for parabolic differential equations”, Comm. Pure and Appl. Math., 17 (1964), 101–134 | DOI | MR | Zbl

[20] Guschin A. K., “Nekotorye svoistva obobschennogo resheniya vtoroi kraevoi zadachi dlya parabolicheskogo uravneniya”, Matem. sb., 97(139) (1975), 242–261 | Zbl

[21] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[22] Täcklind S., “Sur les classes quasianalitiques des solutions des equations aux derivées partielles du type parabolique”, Nova Acta Reg. Soc. Sci Upsaliensis, ser. 4, 10:3 (1936) | Zbl

[23] Holmgren E., “Sur les solutions quasianalytiques de léquation de la chaleur”, Arkiv for mat., astr., och fys., 18:9 (1924) | Zbl

[24] Tikhonov A. N., “Teoremy edinstvennosti dlya uravneniya teploprovodnosti”, Matem. sb., 42(84), 199–216

[25] Ladyzhenskaya O. A., “O edinstvennosti resheniya zadachi Koshi dlya lineinogo parabolicheskogo uravneniya”, Matem. sb., 27(69) (1950), 175–184 | Zbl

[26] Oleinik O. A., Iosifyan G. A., “Analog printsipa Sen-Venana i edinstvennost reshenii kraevykh zadach v neogranichennykh oblastyakh dlya parabolicheskikh uravnenii”, UMN, 31 (1976), 142–166 | MR | Zbl

[27] Oleinik O. A., “O primerakh needinstvennosti resheniya kraevoi zadachi dlya parabolicheskogo uravneniya v neogranichennoi oblasti”, UMN, 38:1 (1983), 183–184 | MR | Zbl

[28] Landis E. M., “O zavisimosti klassov edinstvennosti resheniya vtoroi nachalno kraevoi zadachi dlya uravneniya teploprovodnosti v neogranichennoi oblasti ot geometrii oblasti”, DAN SSSR, 275 (1984), 790–793 | MR | Zbl

[29] Gagnidze A. G., “O klassakh edinstvennosti reshenii kraevykh zadach dlya parabolicheskikh uravnenii vtorogo poryadka v neogranichennoi oblasti”, UMN, 39:6 (1984), 193–194 | MR | Zbl

[30] Aronson D. G., “Non-negative solutions of linear parabolic equations”, Ann. Scuola Norm. Super. Pisa, 22:4 (1968), 607–694 | MR | Zbl