Differential algebras and low-dimensional conservation laws
Sbornik. Mathematics, Tome 71 (1992) no. 2, pp. 319-329 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A number of properties of differential algebras are determined, and on that basis a connection between conservation laws of nonlinear nonregular systems of partial differential equations and properties of a special class of differential operators is found.
@article{SM_1992_71_2_a3,
     author = {V. V. Zharinov},
     title = {Differential algebras and low-dimensional conservation laws},
     journal = {Sbornik. Mathematics},
     pages = {319--329},
     year = {1992},
     volume = {71},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_71_2_a3/}
}
TY  - JOUR
AU  - V. V. Zharinov
TI  - Differential algebras and low-dimensional conservation laws
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 319
EP  - 329
VL  - 71
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1992_71_2_a3/
LA  - en
ID  - SM_1992_71_2_a3
ER  - 
%0 Journal Article
%A V. V. Zharinov
%T Differential algebras and low-dimensional conservation laws
%J Sbornik. Mathematics
%D 1992
%P 319-329
%V 71
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1992_71_2_a3/
%G en
%F SM_1992_71_2_a3
V. V. Zharinov. Differential algebras and low-dimensional conservation laws. Sbornik. Mathematics, Tome 71 (1992) no. 2, pp. 319-329. http://geodesic.mathdoc.fr/item/SM_1992_71_2_a3/

[1] Vladimirov V. S., Zharinov V. V., “Zamknutye formy, assotsiirovannye s lineinymi differentsialnymi operatorami”, Differents. uravneniya, 16:5 (1980), 845–867 | MR | Zbl

[2] Vinogradov A. M., “The $C$-spectral sequence, Lagrangian formalism and conservation laws”, J. Math. Anal. Appl., 100:1 (1984), 1–129 | DOI | MR

[3] Zharinov V. V., “Formula Grina dlya nelineinykh sistem uravnenii v chastnykh proizvodnykh”, Dokl. AN SSSR, 246:4 (1987), 785–787 | MR

[4] Maklein S., Gomologiya, Mir, M., 1966

[5] Tsujishita T., “On variation bicomplexes associated to differential equations”, Osaka J. Math., 19 (1982), 311–363 | MR | Zbl

[6] Olver P. J., Application of Lie groups to differential equations, Springer-Verlag, N. Y., 1986 | MR

[7] Vinogradov A. M., “Local symmetries and conservation laws”, Acta Appl. Math., 2 (1984), 21–78 | DOI | MR | Zbl

[8] Galindo A., Martines L., “Kernels and ranges in the variational formalism”, Lett. Math. Phys., 2 (1978), 385–390 | DOI | MR | Zbl