@article{SM_1992_71_2_a2,
author = {N. V. Ivanov},
title = {Permutation representations of braid groups of surfaces},
journal = {Sbornik. Mathematics},
pages = {309--318},
year = {1992},
volume = {71},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1992_71_2_a2/}
}
N. V. Ivanov. Permutation representations of braid groups of surfaces. Sbornik. Mathematics, Tome 71 (1992) no. 2, pp. 309-318. http://geodesic.mathdoc.fr/item/SM_1992_71_2_a2/
[1] Artin E., “Theorie der Zopfe”, Abh. math. semin. Univ. Hamburg, 4 (1925), 47–72 | DOI | Zbl
[2] Artin E., “Theory of braids”, Ann. Math., 48:1 (1948), 101–126 | DOI | MR
[3] Artin E., “Braids and permutations”, Ann. Math., 48:3 (1947), 643–649 | DOI | MR | Zbl
[4] Briman J. S., Braids, links, and mapping class groups, Ann. Math. Studies, no. 82, 1974, 229 pp.
[5] Dyer J. L., Grossman E. K., “The automorphism group of the braid group”, Amer. J. Math., 103:6 (1981), 1161–1169 | DOI | MR
[6] Fadell E., Neuwirth L., “Configuration spaces”, Math. Scand., 10:1 (1962), 111–118 | MR | Zbl
[7] Fadell E., VanBuskirk J., “The braid groups of $E^2$ and $S^2$”, Duke Math. J., 29:2 (1962), 243–257 | DOI | MR | Zbl
[8] Fox R. H., Neuwirth L., “The braid groups”, Math. Scand., 10:1 (1962), 119–126 | MR | Zbl
[9] Ivanov N. V., “Algebraic properties of mapping class groups of surfaces”, Geometric and algebraic topology, Banach Center Publications, 18, 1986, 15–35 | MR | Zbl
[10] Lin V. Ya., “O predstavleniyakh gruppy kos perestanovkami”, UMN, 27:3 (1972), 192 | MR | Zbl
[11] Lin V. Ya., “Predstavleniya kos perestanovkami”, UMN, 29:1 (1974), 173–174 | MR | Zbl
[12] Scott G. P., “Braid groups and the group of homeomorphisms of a surface”, Proc. Cabridge Phil. Soc., 68:3 (1970), 605–617 | DOI | MR | Zbl