Permutation representations of braid groups of surfaces
Sbornik. Mathematics, Tome 71 (1992) no. 2, pp. 309-318 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper all primitive representations of braid groups on strings of surfaces of finite type in groups of permutations of symbols are found. As an application it is proved that the groups of pure braids of surfaces are characteristic subgroups of the braid groups. These results generalize Artin's classical results on Artin's braid groups.
@article{SM_1992_71_2_a2,
     author = {N. V. Ivanov},
     title = {Permutation representations of braid groups of surfaces},
     journal = {Sbornik. Mathematics},
     pages = {309--318},
     year = {1992},
     volume = {71},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_71_2_a2/}
}
TY  - JOUR
AU  - N. V. Ivanov
TI  - Permutation representations of braid groups of surfaces
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 309
EP  - 318
VL  - 71
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1992_71_2_a2/
LA  - en
ID  - SM_1992_71_2_a2
ER  - 
%0 Journal Article
%A N. V. Ivanov
%T Permutation representations of braid groups of surfaces
%J Sbornik. Mathematics
%D 1992
%P 309-318
%V 71
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1992_71_2_a2/
%G en
%F SM_1992_71_2_a2
N. V. Ivanov. Permutation representations of braid groups of surfaces. Sbornik. Mathematics, Tome 71 (1992) no. 2, pp. 309-318. http://geodesic.mathdoc.fr/item/SM_1992_71_2_a2/

[1] Artin E., “Theorie der Zopfe”, Abh. math. semin. Univ. Hamburg, 4 (1925), 47–72 | DOI | Zbl

[2] Artin E., “Theory of braids”, Ann. Math., 48:1 (1948), 101–126 | DOI | MR

[3] Artin E., “Braids and permutations”, Ann. Math., 48:3 (1947), 643–649 | DOI | MR | Zbl

[4] Briman J. S., Braids, links, and mapping class groups, Ann. Math. Studies, no. 82, 1974, 229 pp.

[5] Dyer J. L., Grossman E. K., “The automorphism group of the braid group”, Amer. J. Math., 103:6 (1981), 1161–1169 | DOI | MR

[6] Fadell E., Neuwirth L., “Configuration spaces”, Math. Scand., 10:1 (1962), 111–118 | MR | Zbl

[7] Fadell E., VanBuskirk J., “The braid groups of $E^2$ and $S^2$”, Duke Math. J., 29:2 (1962), 243–257 | DOI | MR | Zbl

[8] Fox R. H., Neuwirth L., “The braid groups”, Math. Scand., 10:1 (1962), 119–126 | MR | Zbl

[9] Ivanov N. V., “Algebraic properties of mapping class groups of surfaces”, Geometric and algebraic topology, Banach Center Publications, 18, 1986, 15–35 | MR | Zbl

[10] Lin V. Ya., “O predstavleniyakh gruppy kos perestanovkami”, UMN, 27:3 (1972), 192 | MR | Zbl

[11] Lin V. Ya., “Predstavleniya kos perestanovkami”, UMN, 29:1 (1974), 173–174 | MR | Zbl

[12] Scott G. P., “Braid groups and the group of homeomorphisms of a surface”, Proc. Cabridge Phil. Soc., 68:3 (1970), 605–617 | DOI | MR | Zbl