A~formula for the optimal value in the Monge--Kantorovich problem with a~smooth cost function, and a~characterization of cyclically monotone mappings
Sbornik. Mathematics, Tome 71 (1992) no. 2, pp. 533-548

Voir la notice de l'article provenant de la source Math-Net.Ru

The general Monge–Kantorovich problem consists in the computation of the optimal value $$ \mathscr A(c,\rho):=\inf\biggl\{\int_{X\times X}c(x,y)\mu(d(x,y))\colon\mu\in V_+(X\times X),\ (\pi_1-\pi_2)\mu=\rho\biggr\}, $$ where the cost function $c\colon X\times X\to \mathbf R^1$ and the measure $\rho$ on $X$ with $\rho X=0$ are assumed to be given, $V_+(X\times X)$ is the cone of finite positive Borel measures on $X\times X$, and $\pi_1$ and $\pi_2$ are the projections on the first and second coordinates, which assign to a measure $\mu$ the corresponding marginal measures. An explicit formula is obtained for $\mathscr A(c,\rho)$ in the case when $X$ is a domain in $\mathbf R^n$ and $c$ is bounded, vanishes on the diagonal, and is continuously differentiable in a neighborhood of the diagonal. Conditions for the set $$ Q_0(c):=\{u\colon X\to\mathbf R^1:u(x)-u(y)\leqslant c(x,y)\ \ \forall\,x,y\in X\} $$ to be nonempty are investigated, and with their help new characterizations of cyclically monotone mappings are obtained.
@article{SM_1992_71_2_a16,
     author = {V. L. Levin},
     title = {A~formula for the optimal value in the {Monge--Kantorovich} problem with a~smooth cost function, and a~characterization of cyclically monotone mappings},
     journal = {Sbornik. Mathematics},
     pages = {533--548},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1992_71_2_a16/}
}
TY  - JOUR
AU  - V. L. Levin
TI  - A~formula for the optimal value in the Monge--Kantorovich problem with a~smooth cost function, and a~characterization of cyclically monotone mappings
JO  - Sbornik. Mathematics
PY  - 1992
SP  - 533
EP  - 548
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1992_71_2_a16/
LA  - en
ID  - SM_1992_71_2_a16
ER  - 
%0 Journal Article
%A V. L. Levin
%T A~formula for the optimal value in the Monge--Kantorovich problem with a~smooth cost function, and a~characterization of cyclically monotone mappings
%J Sbornik. Mathematics
%D 1992
%P 533-548
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1992_71_2_a16/
%G en
%F SM_1992_71_2_a16
V. L. Levin. A~formula for the optimal value in the Monge--Kantorovich problem with a~smooth cost function, and a~characterization of cyclically monotone mappings. Sbornik. Mathematics, Tome 71 (1992) no. 2, pp. 533-548. http://geodesic.mathdoc.fr/item/SM_1992_71_2_a16/