A~formula for the optimal value in the Monge--Kantorovich problem with a~smooth cost function, and a~characterization of cyclically monotone mappings
Sbornik. Mathematics, Tome 71 (1992) no. 2, pp. 533-548
Voir la notice de l'article provenant de la source Math-Net.Ru
The general Monge–Kantorovich problem consists in the computation of the optimal value
$$
\mathscr A(c,\rho):=\inf\biggl\{\int_{X\times X}c(x,y)\mu(d(x,y))\colon\mu\in V_+(X\times X),\ (\pi_1-\pi_2)\mu=\rho\biggr\},
$$
where the cost function $c\colon X\times X\to \mathbf R^1$ and the measure $\rho$ on $X$ with $\rho X=0$ are assumed to be given, $V_+(X\times X)$ is the cone of finite positive Borel measures on $X\times X$, and $\pi_1$ and $\pi_2$ are the projections on the first and second coordinates, which assign to a measure $\mu$ the corresponding marginal measures.
An explicit formula is obtained for $\mathscr A(c,\rho)$ in the case when $X$ is a domain in $\mathbf R^n$ and $c$ is bounded, vanishes on the diagonal, and is continuously differentiable in a neighborhood of the diagonal.
Conditions for the set
$$
Q_0(c):=\{u\colon X\to\mathbf R^1:u(x)-u(y)\leqslant c(x,y)\ \ \forall\,x,y\in X\}
$$
to be nonempty are investigated, and with their help new characterizations of cyclically monotone mappings are obtained.
@article{SM_1992_71_2_a16,
author = {V. L. Levin},
title = {A~formula for the optimal value in the {Monge--Kantorovich} problem with a~smooth cost function, and a~characterization of cyclically monotone mappings},
journal = {Sbornik. Mathematics},
pages = {533--548},
publisher = {mathdoc},
volume = {71},
number = {2},
year = {1992},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1992_71_2_a16/}
}
TY - JOUR AU - V. L. Levin TI - A~formula for the optimal value in the Monge--Kantorovich problem with a~smooth cost function, and a~characterization of cyclically monotone mappings JO - Sbornik. Mathematics PY - 1992 SP - 533 EP - 548 VL - 71 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1992_71_2_a16/ LA - en ID - SM_1992_71_2_a16 ER -
%0 Journal Article %A V. L. Levin %T A~formula for the optimal value in the Monge--Kantorovich problem with a~smooth cost function, and a~characterization of cyclically monotone mappings %J Sbornik. Mathematics %D 1992 %P 533-548 %V 71 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1992_71_2_a16/ %G en %F SM_1992_71_2_a16
V. L. Levin. A~formula for the optimal value in the Monge--Kantorovich problem with a~smooth cost function, and a~characterization of cyclically monotone mappings. Sbornik. Mathematics, Tome 71 (1992) no. 2, pp. 533-548. http://geodesic.mathdoc.fr/item/SM_1992_71_2_a16/